Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553499

RESUMO

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Assuntos
Neutrófilos , Orthomyxoviridae , Animais , Camundongos , Neutrófilos/metabolismo , Gasderminas , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Orthomyxoviridae/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
2.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36264642

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Inibidores de MTOR , Internalização do Vírus , Sirolimo/farmacologia , Imunidade Inata , Proteínas de Membrana , Proteínas de Ligação a RNA
3.
J Mol Biol ; 434(6): 167225, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34487793

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is an enveloped virus responsible for the COVID-19 pandemic. The emergence of new potentially more transmissible and vaccine-resistant variants of SARS-CoV-2 is an ever-present threat. Thus, it remains essential to better understand innate immune mechanisms that can inhibit the virus. One component of the innate immune system with broad antipathogen, including antiviral, activity is a group of cationic immune peptides termed defensins. The ability of defensins to neutralize enveloped and non-enveloped viruses and to inactivate numerous bacterial toxins correlate with their ability to promote the unfolding of proteins with high conformational plasticity. We found that human neutrophil α-defensin HNP1 binds to SARS-CoV-2 Spike protein with submicromolar affinity that is more than 20 fold stronger than its binding to serum albumin. As such, HNP1, as well as a θ-defensin retrocyclin RC-101, both interfere with Spike-mediated membrane fusion, Spike-pseudotyped lentivirus infection, and authentic SARS-CoV-2 infection in cell culture. These effects correlate with the abilities of the defensins to destabilize and precipitate Spike protein and inhibit the interaction of Spike with the ACE2 receptor. Serum reduces the anti-SARS-CoV-2 activity of HNP1, though at high concentrations, HNP1 was able to inactivate the virus even in the presence of serum. Overall, our results suggest that defensins can negatively affect the native conformation of SARS-CoV-2 Spike, and that α- and θ-defensins may be valuable tools in developing SARS-CoV-2 infection prevention strategies.


Assuntos
COVID-19 , Defensinas , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , alfa-Defensinas , COVID-19/sangue , COVID-19/imunologia , Defensinas/metabolismo , Humanos , Imunidade Inata , Peptídeos/metabolismo , Conformação Proteica , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa-Defensinas/metabolismo
4.
bioRxiv ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33880473

RESUMO

SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.

5.
Cancer Immunol Immunother ; 70(11): 3093-3103, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33765210

RESUMO

Cancer vaccines that utilize patient antigen-presenting cells to fight their own tumors have shown exciting promise in many preclinical studies, but have proven quite challenging to translate to clinical feasibility. Dendritic cells have typically been the cell of choice for such vaccine platforms, due to their ability to endocytose antigens nonspecifically, and their expression of multiple surface molecules that enhance antigen presentation. However, dendritic cells are present in low numbers in human peripheral blood and must be matured in culture before use in vaccines. Mature B lymphocytes, in contrast, are relatively abundant in peripheral blood, and can be quickly activated and expanded in overnight cultures. We devised an optimal stimulation cocktail that engages the B cell antigen receptor, CD40, TLR4 and TLR7, to activate B cells to present antigens from lysates of the recipient's tumor cells, precluding the need for known tumor antigens. This B cell vaccine (Bvac) improved overall survival from B16F1 melanoma challenge, as well as reduced tumor size and increased time to tumor appearance. Bvac upregulated B cell antigen presentation molecules, stimulated activation of both CD4+ and CD8+ T cells, and induced T cell migration. Bvac provides an alternative cellular vaccine strategy that has considerable practical advantages for translation to clinical settings.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos B/imunologia , Vacinas Anticâncer/imunologia , Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Animais , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/farmacologia , Quimiotaxia de Leucócito/imunologia , Feminino , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
6.
EMBO J ; 40(3): e106501, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270927

RESUMO

Interferon-induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS-CoV-2 Spike-pseudotyped virus and genuine SARS-CoV-2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain- and loss-of-function approaches. Mechanistically, SARS-CoV-2 restriction occurred independently of IFITM3 S-palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis-promoting YxxФ motif converted human IFITM3 into an enhancer of SARS-CoV-2 infection, and cell-to-cell fusion assays confirmed the ability of endocytic mutants to enhance Spike-mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS-CoV-2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro- and anti-viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity-based mechanisms used for endosomal SARS-CoV-2 restriction.


Assuntos
Antígenos de Diferenciação/genética , COVID-19/genética , Proteínas de Membrana/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Mutação , SARS-CoV-2/fisiologia , Serina Endopeptidases , Internalização do Vírus
7.
J Biol Chem ; 294(52): 19844-19851, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31735710

RESUMO

Type I interferon (IFN) induced by virus infections during pregnancy can cause placental damage, but the mechanisms and identities of IFN-stimulated genes that are involved in this damage remain under investigation. The IFN-induced transmembrane proteins (IFITMs) inhibit virus infections by preventing virus membrane fusion with cells and by inhibiting fusion of infected cells (syncytialization). Fusion of placental trophoblasts via expression of endogenous retroviral fusogens known as syncytins forms the syncytiotrophoblast, a multinucleated cell structure essential for fetal development. We found here that IFN blocks fusion of BeWo human placental trophoblasts. Stably expressed IFITM1, -2, and -3 also blocked fusion of these trophoblasts while making them more resistant to virus infections. Conversely, stable IFITM knockdowns in BeWo trophoblasts increased their spontaneous fusion and allowed fusion in the presence of IFN while also making the cells more susceptible to virus infection. We additionally found that exogenous expression of IFITMs in HEK293T cells blocked fusion with cells expressing syncytin-1 or syncytin-2, confirming the ability of IFITMs to block individual syncytin-mediated fusion. Overall, our data indicate that IFITMs inhibit trophoblast fusion and suggest that there may be a critical balance between these antifusogenic effects and the beneficial antiviral effects of IFITMs in virus infections during pregnancy.


Assuntos
Antígenos de Diferenciação/metabolismo , Produtos do Gene env/metabolismo , Proteínas de Membrana/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas de Ligação a RNA/metabolismo , Antígenos de Diferenciação/química , Antígenos de Diferenciação/genética , Antivirais/farmacologia , Fusão Celular , Feminino , Células HEK293 , Humanos , Interferon Tipo I/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Placenta/citologia , Gravidez , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Trofoblastos/citologia , Trofoblastos/metabolismo , Internalização do Vírus/efeitos dos fármacos , Zika virus/fisiologia
8.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 382-394, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290238

RESUMO

Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.


Assuntos
Desaminases APOBEC/imunologia , Proteínas Nucleares/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Viroses/imunologia , Imunidade Adaptativa/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Proteínas de Ligação a RNA , Proteínas Repressoras , Proteínas Virais/metabolismo , Viroses/genética , Viroses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA