Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 18(2): 609-625, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453694

RESUMO

Mesenchymal stem cells comprise a natural reservoir of undifferentiated cells within adult tissues. Given their self-renewal, multipotency, regenerative potential and immunomodulatory properties, MSCs have been reported as a promising cell therapy for the treatment of different diseases, including neurodegenerative and autoimmune diseases. In this study, we investigated the immunomodulatory properties of human tubal mesenchymal stem cells (htMSCs) using the EAE model. htMSCs were able to suppress dendritic cells activation downregulating antigen presentation-related molecules, such as MHCII, CD80 and CD86, while impairing IFN-γ and IL-17 and increasing IL-10 and IL-4 secretion. It further correlated with milder disease scores when compared to the control group due to fewer leukocytes infiltrating the CNS, specially Th1 and Th17 lymphocytes, associated with increased IL-10 secreting Tr1 cells. Conversely, microglia were less activated and infiltrating mononuclear cells secreted higher levels of IL-4 and IL-10 and expressed reduced chemokine receptors as CCR4, CCR6 and CCR8. qPCR of the spinal cords revealed upregulation of indoleamine-2,3-dioxygenase (IDO) and brain derived neurotrophic factor (BDNF). Taken together, here evidenced the potential of htMSCs as an alternative for the treatment of inflammatory, autoimmune or neurodegenerative diseases.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , Adulto , Animais , Sistema Nervoso Central , Encefalomielite Autoimune Experimental/terapia , Tubas Uterinas , Feminino , Humanos , Interleucina-10 , Interleucina-4
2.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834918

RESUMO

INTRODUCTION: ZIKV is a highly neurotropic virus that can cause the death of infected neuroprogenitor cells through mitochondrial damage and intrinsic apoptotic signaling. In this context, the role of reactive oxygen species (ROS) in neuronal cell death caused by ZIKV still remains elusive. OBJECTIVE: We aimed at evaluating the role of these cellular components in the death of human undifferentiated neuroblastoma cell line infected with ZIKV. RESULTS: ZIKV infection resulted in the extensive death of SH-SY5Y cells with the upregulation of several genes involved in survival and apoptotic responses as well as the colocalization of mitochondrial staining with ZIKV Envelope (E) protein. Notably, levels of intracellular reactive oxygen species (ROS) were not altered during ZIKV infection in undifferentiated SH-SY5Y cells, and consistent with these results, the treatment of infected cells with the widely studied ROS scavenger N-acetylcysteine (NAC) did not prevent cell death in these cells. CONCLUSION: Altogether, our results suggest that excessive ROS production is not the main trigger of SH-SY5Y cells death in ZIKV infection.


Assuntos
Apoptose , Neuroblastoma/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Infecção por Zika virus/fisiopatologia , Zika virus/fisiologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/virologia , Estresse Oxidativo , Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
3.
Front Toxicol ; 3: 802542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295109

RESUMO

The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.

4.
Nat Neurosci ; 23(8): 939-951, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690969

RESUMO

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation. Specifically, ZIKV infection induces kynurenine (Kyn) production, which activates AHR, limiting the production of type I interferons (IFN-I) involved in antiviral immunity. Moreover, ZIKV-triggered AHR activation suppresses intrinsic immunity driven by the promyelocytic leukemia (PML) protein, which limits ZIKV replication. AHR inhibition suppressed the replication of multiple ZIKV strains in vitro and also suppressed replication of the related flavivirus dengue. Finally, AHR inhibition with a nanoparticle-delivered AHR antagonist or an inhibitor developed for human use limited ZIKV replication and ameliorated newborn microcephaly in a murine model. In summary, we identified AHR as a host factor for ZIKV replication and PML protein as a driver of anti-ZIKV intrinsic immunity.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Replicação Viral , Zika virus/metabolismo , Animais , Chlorocebus aethiops , Células Hep G2 , Humanos , Células Vero , Infecção por Zika virus/metabolismo
5.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954845

RESUMO

Viral infections have long been the cause of severe diseases to humans, increasing morbidity and mortality rates worldwide, either in rich or poor countries. Yellow fever virus, H1N1 virus, HIV, dengue virus, hepatitis B and C are well known threats to human health, being responsible for many million deaths annually, associated to a huge economic and social cost. In this context, a recently introduced flavivirus in South America, called Zika virus (ZIKV), led the WHO to declare in February 1st 2016 a warning on Public Health Emergency of International Concern (PHEIC). ZIKV is an arbovirus of the Flaviviridae family firstly isolated from sentinels Rhesus sp. monkeys at the Ziika forest in Uganda, Africa, in 1947. Lately, the virus has well adapted to the worldwide spread Aedes aegypti mosquito, the vector for DENV, CHIKV, YFV and many others. At first, it was not considered a threat to human health, but everything changed when a skyrocketing number of babies born with microcephaly and adults with Guillain-Barré syndrome were reported, mainly in northeastern Brazil. It is now well established that the virus is responsible for the so called congenital Zika syndrome (CZS), whose most dramatic features are microcephaly, arthrogryposis and ocular damage. Thus, in this review, we provide a brief discussion of these main clinical aspects of the CZS, correlating them with the experimental animal models described so far.(AU)


Assuntos
Artrogripose , Aedes , Zika virus , Microcefalia , Modelos Teóricos
6.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484698

RESUMO

Abstract Viral infections have long been the cause of severe diseases to humans, increasing morbidity and mortality rates worldwide, either in rich or poor countries. Yellow fever virus, H1N1 virus, HIV, dengue virus, hepatitis B and C are well known threats to human health, being responsible for many million deaths annually, associated to a huge economic and social cost. In this context, a recently introduced flavivirus in South America, called Zika virus (ZIKV), led the WHO to declare in February 1st 2016 a warning on Public Health Emergency of International Concern (PHEIC). ZIKV is an arbovirus of the Flaviviridae family firstly isolated from sentinels Rhesus sp. monkeys at the Ziika forest in Uganda, Africa, in 1947. Lately, the virus has well adapted to the worldwide spread Aedes aegypti mosquito, the vector for DENV, CHIKV, YFV and many others. At first, it was not considered a threat to human health, but everything changed when a skyrocketing number of babies born with microcephaly and adults with Guillain-Barré syndrome were reported, mainly in northeastern Brazil. It is now well established that the virus is responsible for the so called congenital Zika syndrome (CZS), whose most dramatic features are microcephaly, arthrogryposis and ocular damage. Thus, in this review, we provide a brief discussion of these main clinical aspects of the CZS, correlating them with the experimental animal models described so far.

7.
Chem Biol Interact ; 227: 104-11, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25559858

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected with this disease worldwide. T. cruzi infection causes an intense inflammatory response, which is critical for the control of parasite proliferation and disease development. Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as chemopreventive agents. In this study, we investigated the effect of NO-indomethacin on parasite burden, cell invasion, and oxidative stress in erythrocytes during the acute phase of infection. NO-indomethacin was dissolved in dimethyl formamide followed by i.p. administration of 50 ppm into mice 30 min after infection with 5×10(3) blood trypomastigote forms (Y strain). The drug was administered every day until the animals died. Control animals received 100 µL of drug vehicle via the same route. Within the NO-indomethacin-treatment group, parasitemia and mortality (100%) were higher and oxidative stress in erythrocytes, anemia, and entry of parasites into macrophages were significantly greater than that seen in controls. Increase in the entry and survival of intracellular T. cruzi was associated with inhibition of nitric oxide production by macrophages treated with NO-indomethacin (2.5 µM). The results of this study provide strong evidence that NO-NSAIDs potently inhibit nitric oxide production, suggesting that NO-NSAID-based therapies against infections would be difficult to design and would require caution.


Assuntos
Indometacina/análogos & derivados , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Trypanosoma cruzi/patogenicidade , Anemia/metabolismo , Anemia/patologia , Animais , Células Cultivadas , Suscetibilidade a Doenças , Eritrócitos/metabolismo , Feminino , Indometacina/química , Indometacina/farmacologia , Macrófagos/citologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/química , Estresse Oxidativo/efeitos dos fármacos , Parasitemia/tratamento farmacológico , Parasitemia/mortalidade , Parasitemia/patologia
8.
Semina cienc. biol. saude ; 35(2): 147-162, jul.-dez. 2014.
Artigo em Português | LILACS | ID: lil-768383

RESUMO

Diversos estudos demonstram a importância de aspectos imunológicos na gestação. Durante a gestação ocorre a implantação do embrião no útero materno, onde irá se desenvolver até o final da gravidez. Dentre os aspectos imunes, pode-se citar a importância da modulação dos linfócitos T, das células natural killers (NK) e das diversas citocinas existentes no organismo materno. A tolerância materna ao feto parece ser mediada por hormônios maternos específicos e pela expressão do antígeno leucocitário humano G (HLA-G) característico na gravidez. Outros estudos sugerem que a rejeição fetal e complicações durante a gravidez podem ocorrer devido à presença de antígenos de histocompatibilidade menor (mHAg), adquiridos pela mãe a partir do compartilhamento sanguíneo com o feto, e devido à presença de anticorpos maternos contra o espermatozoide e contra o feto. O objetivo desta revisão é descrever os aspectos imunológicos que permitem a tolerância materna ao feto na gestação, assim como possíveis causas para a rejeição do embrião e complicações durante a gravidez.(


Several studies demonstrate the importance of immunological aspects of pregnancy. During pregnancy,the embryo is implanted in the womb, where it will develop until the end of pregnancy. Amongst the immune aspects, the importance of the modulation of T lymphocytes, natural killers (NK) cells and many cytokines in maternal organism can be mentioned. The maternal tolerance to the fetus appearsto be mediated by specific maternal hormones and by the expression of human leukocyte antigen G (HLA-G) - characteristic in pregnancy. Other studies suggest that fetal rejection and complications during pregnancy may occur because of the presence of minor histocompatibility antigens (mHAg), acquired by blood sharing of the mother with the fetus, and because of the presence of maternal antibodies against the sperm and against the fetus. The purpose of this review is to describe the immunological aspects that allow maternal tolerance to the fetus during pregnancy, as well as possible causes forrejection of the embryo and complications during pregnancy.


Assuntos
Humanos , Feminino , Adulto , Anticorpos , Antígenos HLA-G , Antígenos de Histocompatibilidade , Citocinas , Gravidez , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA