Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983075

RESUMO

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Cultivadas , Desferroxamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Quelantes de Ferro/farmacologia , Vesículas Extracelulares/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675268

RESUMO

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Assuntos
Diabetes Mellitus , Campos Eletromagnéticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Anti-Inflamatórios , Biofísica
3.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897825

RESUMO

Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Materiais Biocompatíveis/uso terapêutico , Polímeros , Transplante de Células-Tronco , Engenharia Tecidual , Cicatrização
4.
Cancer Sci ; 113(8): 2590-2599, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633186

RESUMO

Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic lesions, called microGIST, are detected in approximately 30% of the general population. Gastrointestinal stromal tumor driver mutation can be already detected in microGISTs, even if they do not progress into malignant cancer; these mutations are necessary, but insufficient events to foster tumor progression. Here we profiled the tissue microbiota of 60 gastrointestinal specimens in three different patient cohorts-micro, low-risk, and high-risk or metastatic GIST-exploring the compositional structure, predicted function, and microbial networks, with the aim of providing a complete overview of microbial ecology in GIST and its preclinical form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac and Bray-Curtis dissimilarities showed significant community-level separation between them and a pronounced difference in Proteobacteria, Firmicutes, and Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers associated with a specific type of lesion were identified. In particular, GIST samples were significantly enriched in the phylum Proteobacteria compared to microGISTs. Several pathways involved in sugar metabolism were also highlighted in GISTs; this was expected as cancer usually displays high aerobic glycolysis in place of oxidative phosphorylation and rise of glucose flux to promote anabolic request. Our results highlight that specific differences do exist in the tissue microbiome community between GIST and benign lesions and that microbiome restructuration can drive the carcinogenesis process.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Microbiota , Transformação Celular Neoplásica , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
5.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203624

RESUMO

The constant dialogue between the plant world and the animal world (including man among them) has been known since the time of Adam and Eve, where an apple was the origin of the evils of the world. Apart from Snow White-who might have something to object to when it comes to the use of apples-fruits, plants, and natural extracts have been known for millennia as remedies for human health-related ailments. In the light of such evidence, the aim of the present work was to investigate from a biological point of view the potential role of apple exosomes in inflammatory processes on human cells. To this end we isolated and characterized apple exosomes and treated human cells such as macrophages and NCTC L929 as cancer cells in order to evaluate the tumorigenic and anti-inflammatory effect of apple exomes. Microscopic and molecular biology analyses were conducted to characterize exosomes and to assess cell proliferation, death, and miRNA line, as well as gene expression and the uptake of exosomes by cells. The results confirm the absolute biological safety of exosomes and their anti-inflammatory effect, mediated mainly by miRNA146 production by M2 macrophages.

6.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162968

RESUMO

The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.


Assuntos
Procedimentos Ortopédicos/instrumentação , Impressão Tridimensional/instrumentação , Animais , Humanos , Modelos Anatômicos , Modelos Animais , Próteses e Implantes
7.
Biomedicines ; 9(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356888

RESUMO

A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809791

RESUMO

BACKGROUND: Electrospun fibers have attracted a lot of attention from researchers due to their several characteristics, such as a very thin diameter, three-dimensional topography, large surface area, flexible surface, good mechanical characteristics, suitable for widespread applications. Indeed, electro-spinning offers many benefits, such as great surface-to-volume ratio, adjustable porosity, and the ability of imitating the tissue extra-cellular matrix. METHODS: we processed Poly ε-caprolactone (PCL) via electrospinning for the production of bilayered tubular scaffolds for vascular tissue engineering application. Endothelial cells and fibroblasts were seeded into the two side of the scaffolds: endothelial cells onto the inner side composed of PCL/Gelatin fibers able to mimic the inner surface of the vessels, and fibroblasts onto the outer side only exposing PCL fibers. Extracellular matrix production and organization has been performed by means of classical immunofluorescence against collagen type I fibers, Scanning Electron-Microscopy (SEM) has been performed in order to evaluated ultrastructural morphology, gene expression by means gene expression has been performed to evaluate the phenotype of endothelial cells and fibroblasts. RESULTS AND CONCLUSION: results confirmed that both cells population are able to conserve their phenotype colonizing the surface supporting the hypothesis that PCL scaffolds based on electrospun fibers should be a good candidate for vascular surgery.

9.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419357

RESUMO

Gastric cancer (GC) is the fifth most prevalent cancer worldwide and the third leading cause of global cancer mortality. With the advances of the omic studies, a heterogeneous GC landscape has been revealed, with significant molecular diversity. Given the multifaceted nature of GC, identification of different patient subsets with prognostic and/or predictive outcomes is a key aspect to allow tailoring of specific treatments. Recently, the involvement of the microbiota in gastric carcinogenesis has been described. To deepen this aspect, we compared microbiota composition in signet-ring cell carcinoma (SRCC) and adenocarcinoma (ADC), two distinct GC subtypes. To this purpose, 10 ADC and 10 SRCC and their paired non-tumor (PNT) counterparts were evaluated for microbiota composition through 16S rRNA analysis. Weighted and unweighted UniFrac and Bray-Curtis dissimilarity showed significant community-level separation between ADC and SRCC. Through the LEfSe (linear discriminant analysis coupled with effect size) tool, we identified potential microbial biomarkers associated with GC subtypes. In particular, SRCCs were significantly enriched in the phyla Fusobacteria, Bacteroidetes, Patescibacteria, whereas in the ADC type, Proteobacteria and Acidobacteria phyla were found. Overall, our data add new insights into GC heterogeneity and may contribute to deepening the GC classification.


Assuntos
Adenocarcinoma/microbiologia , Carcinoma de Células em Anel de Sinete/microbiologia , Microbiota/genética , Neoplasias Gástricas/microbiologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Adenocarcinoma/genética , Adenocarcinoma/patologia , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Carcinoma de Células em Anel de Sinete/genética , Carcinoma de Células em Anel de Sinete/patologia , Feminino , Fusobactérias/genética , Heterogeneidade Genética , Humanos , Masculino , Medicina de Precisão , Prognóstico , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
10.
Cancers (Basel) ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336701

RESUMO

Background: A wealth of evidence has shown that microRNAs (miRNAs) can modulate specific genes, increasing our knowledge on the fine-tuning regulation of protein expression. miR-221 and miR-222 have been frequently identified as deregulated across different cancer types; however, their prognostic significance in cancer remains controversial. In view of these considerations, we performed an updated systematic review and meta-analysis of published data investigating the effects of miR-221/222 on overall survival (OS) and other secondary outcomes among cancer patients. A systematic search of PubMed, Web of Knowledge, and Cochrane Library databases was performed. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to assess the strength of association. Results: Fifty studies, analyzing 6086 patients, were included in the systematic review. Twenty-five studies for miR-221 and 17 studies for miR-222 which assessed OS were included in the meta-analysis. High expression of miR-221 and miR-222 significantly predicted poor OS (HR: 1.48, 95% CI: 1.14-1.93, p = 0.003 and HR: 1.90, 95% CI: 1.43-2.54, p < 0.001, respectively). Subgroup analysis revealed that the finding on miR-221 was not as robust as the one on miR-222. Furthermore, high miR-222 expression was also associated with worse progression-free survival and disease-free survival pooled with recurrence-free survival. Conclusions: The meta-analysis demonstrated that high expression of miR-222 is associated with poor prognosis in cancer patients, whereas the significance of miR-221 remains unclear. More work is required to fully elucidate the role of miR-221 and miR-222 in cancer prognosis, particularly in view of the limitations of existing results, including the significant heterogeneity and limited number of studies for some cancers.

11.
Cancer Manag Res ; 11: 6229-6244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308757

RESUMO

Background: Gastrointestinal stromal tumors (GISTs) represent a worldwide paradigm of target therapy. The introduction of tyrosine kinase inhibitors has deeply changed the prognosis of GIST patients, however, the majority of them acquire secondary mutations and progress. Unfortunately, besides tyrosine-kinase inhibitors, no other therapeutic options are available. Therefore, it is mandatory to identify novel molecules and/or strategies to overcome the inevitable resistance. In this context, after promising preclinical data on the novel PI3K inhibitor BYL719, the NCT01735968 trial in GIST patients who had previously failed treatment with imatinib and sunitinib started. BYL719 has attracted our attention, and we comprehensively characterized genomic and transcriptomic changes taking place during resistance. Methods: For this purpose, we generated two in vitro GIST models of acquired resistance to BYL719 and performed an omic-based analysis by integrating RNA-sequencing, miRNA, and methylation profiles in sensitive and resistant cells. Results: We identified novel epigenomic mechanisms of pharmacological resistance in GISTs suggesting the existence of pathways involved in drug resistance and alternatively acquired mutations. Therefore, epigenomics should be taken into account as an alternative adaptive mechanism. Conclusion: Despite the fact that currently we do not have patients in treatment with BYL719 to verify this hypothesis, the most intriguing result is the involvement of H19 and PSTA1 in GIST resistance, which might represent druggable targets.

12.
Cancer ; 125(5): 712-725, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480765

RESUMO

BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA