Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Blood ; 144(5): 510-524, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38684038

RESUMO

ABSTRACT: The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the microenvironment, triggered T-bet expression, which affected promoter-proximal and distal chromatin coaccessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling and negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of patients with CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling, which has implications for the stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in the inflammatory signaling pathways in CLL.


Assuntos
Proliferação de Células , Leucemia Linfocítica Crônica de Células B , Proteínas com Domínio T , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Animais , Humanos , Camundongos , Linfócitos B/patologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Camundongos Knockout , Regulação Leucêmica da Expressão Gênica , NF-kappa B/metabolismo
2.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244574

RESUMO

MOTIVATION: Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings. RESULTS: We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted circular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results were validated in a lung squamous cell carcinoma dataset from TCGA (n = 367 samples) by comparison to segmentations derived from genotyping arrays (Pearson's correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma cohort from TCGA (n = 239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts. AVAILABILITY AND IMPLEMENTATION: Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Animais , Camundongos , Software , Variações do Número de Cópias de DNA , Neoplasias/genética , Genômica , Algoritmos
4.
Nat Commun ; 13(1): 6226, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266272

RESUMO

Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteogenômica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteômica , Proteoma/genética , Mutação , Receptores de Antígenos de Linfócitos B/metabolismo
6.
Nat Commun ; 13(1): 4485, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918329

RESUMO

The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is unclear. Here, we use comprehensive molecular characterization by whole genome/exome, transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational heterogeneity with TP53, MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated known cancer-related genes. The most common fusion partner is FGFR2, the most common focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17 patients) and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical value of molecular analysis and underline the need for innovative, mechanism-based clinical trials.


Assuntos
Neoplasias Primárias Desconhecidas , Epigenômica , Genômica , Homozigoto , Humanos , Mutação , Neoplasias Primárias Desconhecidas/tratamento farmacológico , Neoplasias Primárias Desconhecidas/genética , Deleção de Sequência
8.
Int J Cancer ; 151(4): 590-606, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35411591

RESUMO

Chromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


Assuntos
Neoplasias Ósseas , Neoplasias Cerebelares , Cromotripsia , Osteossarcoma , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , DNA , Reparo do DNA , Proteínas Hedgehog/genética , Humanos , Camundongos , Osteossarcoma/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
9.
Nat Commun ; 13(1): 178, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013316

RESUMO

Cancer driving mutations are difficult to identify especially in the non-coding part of the genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using 3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrichment in coding regions and regulatory elements for 6 mutational signatures, including APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32 hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers mutational processes associated with known and putative tumor drivers and hotspots particularly in the non-coding regions of the genome.


Assuntos
Desaminases APOBEC/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , DNA Intergênico/genética , Tecnologia de Impulso Genético , Proteínas de Neoplasias/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Atlas como Assunto , Criança , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , DNA Intergênico/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Mutagênese , Taxa de Mutação , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Motivos de Nucleotídeos , Fases de Leitura Aberta
10.
Leukemia ; 36(2): 464-475, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34417556

RESUMO

Chronic lymphocytic leukemia (CLL) is a B-cell malignancy mainly occurring at an advanced age with no single major genetic driver. Transgenic expression of TCL1 in B cells leads after a long latency to a CLL-like disease in aged Eµ-TCL1 mice suggesting that TCL1 overexpression is not sufficient for full leukemic transformation. In search for secondary genetic events and to elucidate the clonal evolution of CLL, we performed whole exome and B-cell receptor sequencing of longitudinal leukemia samples of Eµ-TCL1 mice. We observed a B-cell receptor stereotypy, as described in patients, confirming that CLL is an antigen-driven disease. Deep sequencing showed that leukemia in Eµ-TCL1 mice is mostly monoclonal. Rare oligoclonality was associated with inability of tumors to develop disease upon adoptive transfer in mice. In addition, we identified clonal changes and a sequential acquisition of mutations with known relevance in CLL, which highlights the genetic similarities and therefore, suitability of the Eµ-TCL1 mouse model for progressive CLL. Among them, a recurrent gain of chromosome 15, where Myc is located, was identified in almost all tumors in Eµ-TCL1 mice. Interestingly, amplification of 8q24, the chromosomal region containing MYC in humans, was associated with worse outcome of patients with CLL.


Assuntos
Evolução Clonal , Mutação com Ganho de Função , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Cromossomos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética
11.
Haematologica ; 107(3): 604-614, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691380

RESUMO

Clonal evolution is involved in the progression of chronic lymphocytic leukemia (CLL). In order to link evolutionary patterns to different disease courses, we performed a long-term longitudinal mutation profiling study of CLL patients. Tracking somatic mutations and their changes in allele frequency over time and assessing the underlying cancer cell fraction revealed highly distinct evolutionary patterns. Surprisingly, in long-term stable disease and in relapse after long-lasting clinical response to treatment, clonal shifts are minor. In contrast, in refractory disease major clonal shifts occur although there is little impact on leukemia cell counts. As this striking pattern in refractory cases is not linked to a strong contribution of known CLL driver genes, the evolution is mostly driven by treatment-induced selection of sub-clones, underlining the need for novel, non-genotoxic treatment regimens.


Assuntos
Leucemia Linfocítica Crônica de Células B , Evolução Clonal/genética , Células Clonais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Estudos Longitudinais , Mutação
12.
Immunity ; 54(12): 2825-2841.e10, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34879221

RESUMO

T cell exhaustion limits anti-tumor immunity and responses to immunotherapy. Here, we explored the microenvironmental signals regulating T cell exhaustion using a model of chronic lymphocytic leukemia (CLL). Single-cell analyses identified a subset of PD-1hi, functionally impaired CD8+ T cells that accumulated in secondary lymphoid organs during disease progression and a functionally competent PD-1int subset. Frequencies of PD-1int TCF-1+ CD8+ T cells decreased upon Il10rb or Stat3 deletion, leading to accumulation of PD-1hi cells and accelerated tumor progression. Mechanistically, inhibition of IL-10R signaling altered chromatin accessibility and disrupted cooperativity between the transcription factors NFAT and AP-1, promoting a distinct NFAT-associated program. Low IL10 expression or loss of IL-10R-STAT3 signaling correlated with increased frequencies of exhausted CD8+ T cells and poor survival in CLL and in breast cancer patients. Thus, balance between PD-1hi, exhausted CD8+ T cells and functional PD-1int TCF-1+ CD8+ T cells is regulated by cell-intrinsic IL-10R signaling, with implications for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Receptores de Interleucina-10/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Microambiente Celular , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interleucina-10/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34036222

RESUMO

PURPOSE: CATCH (Comprehensive Assessment of clinical feaTures and biomarkers to identify patients with advanced or metastatic breast Cancer for marker driven trials in Humans) is a prospective precision oncology program that uses genomics and transcriptomics to guide therapeutic decisions in the clinical management of metastatic breast cancer. Herein, we report our single-center experience and results on the basis of the first 200 enrolled patients of an ongoing trial. METHODS: From June 2017 to March 2019, 200 patients who had either primary metastatic or progressive disease, with any number of previous treatment lines and at least one metastatic site accessible to biopsy, were enrolled. DNA and RNA from tumor tissue and corresponding blood-derived nontumor DNA were profiled using whole-genome and transcriptome sequencing. Identified actionable alterations were brought into clinical context in a multidisciplinary molecular tumor board (MTB) with the aim of prioritizing personalized treatment recommendations. RESULTS: Among the first 200 enrolled patients, 128 (64%) were discussed in the MTB, of which 64 (50%) were subsequently treated according to MTB recommendation. Of 53 evaluable patients, 21 (40%) achieved either stable disease (n = 13, 25%) or partial response (n = 8, 15%). Furthermore, 16 (30%) of those patients showed improvement in progression-free survival of at least 30% while on MTB-recommended treatment compared with the progression-free survival of the previous treatment line. CONCLUSION: The initial phase of this study demonstrates that precision oncology on the basis of whole-genome and RNA sequencing is feasible when applied in the clinical management of patients with metastatic breast cancer and provides clinical benefit to a substantial proportion of patients.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Medicina de Precisão , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Feminino , Genoma , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Transcriptoma
14.
Neuro Oncol ; 23(12): 2028-2041, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049392

RESUMO

BACKGROUND: Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. METHODS: We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). RESULTS: In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. CONCLUSION: The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.


Assuntos
Neoplasias Cerebelares , Cromotripsia , Radioterapia com Íons Pesados , Síndrome de Li-Fraumeni , Meduloblastoma , Animais , Carbono , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Camundongos
15.
Oncogene ; 40(16): 2830-2841, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731860

RESUMO

Adult pilocytic astrocytomas (PAs) have been regarded as indistinguishable from pediatric PAs in terms of genome-wide expression and methylation patterns. It has been unclear whether adult PAs arise early in life and remain asymptomatic until adulthood, or whether they develop during adulthood. We sought to determine the age and origin of adult human PAs using two types of "marks" in the genomic DNA. First, we analyzed the DNA methylation patterns of adult and pediatric PAs to distinguish between PAs of different anatomic locations (n = 257 PA and control brain tissues). Second, we measured the concentration of nuclear bomb test-derived 14C in genomic DNA (n = 14 cases), which indicates the time point of the formation of human cell populations. Our data suggest that adult and pediatric PAs developing in the infratentorial brain are closely related and potentially develop from precursor cells early in life, whereas supratentorial PAs might show age and location-specific differences.


Assuntos
Astrocitoma/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Incidência , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Adulto Jovem
16.
Genes Chromosomes Cancer ; 60(5): 303-313, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32734664

RESUMO

In vitro assays for clustered DNA lesions will facilitate the analysis of the mechanisms underlying complex genome rearrangements such as chromothripsis, including the recruitment of repair factors to sites of DNA double-strand breaks (DSBs). We present a novel method generating localized DNA DSBs using UV irradiation with photomasks. The size of the damage foci and the spacing between lesions are fully adjustable, making the assay suitable for different cell types and targeted areas. We validated this setup with genomically stable epithelial cells, normal fibroblasts, pluripotent stem cells, and patient-derived primary cultures. Our method does not require a specialized device such as a laser, making it accessible to a broad range of users. Sensitization by 5-bromo-2-deoxyuridine incorporation is not required, which enables analyzing the DNA damage response in post-mitotic cells. Irradiated cells can be cultivated further, followed by time-lapse imaging or used for downstream biochemical analyses, thanks to the high throughput of the system. Importantly, we showed genome rearrangements in the irradiated cells, providing a proof of principle for the induction of structural variants by localized DNA lesions.


Assuntos
Quebras de DNA de Cadeia Dupla , Mutagênese , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/efeitos da radiação , Raios Ultravioleta
17.
Int J Cancer ; 148(1): 115-127, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930393

RESUMO

Genomic alterations are a driving force in the multistep process of head and neck cancer (HNC) and result from the interaction of exogenous environmental exposures and endogenous cellular processes. Each of these processes leaves a characteristic pattern of mutations on the tumor genome providing the unique opportunity to decipher specific signatures of mutational processes operative during HNC pathogenesis and to address their prognostic value. Computational analysis of whole exome sequencing data of the HIPO-HNC (Heidelberg Center for Personalized Oncology-head and neck cancer) (n = 83) and TCGA-HNSC (The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma) (n = 506) cohorts revealed five common mutational signatures (Catalogue of Somatic Mutations in Cancer [COSMIC] Signatures 1, 2, 3, 13 and 16) and demonstrated their significant association with etiological risk factors (tobacco, alcohol and HPV16). Unsupervised hierarchical clustering identified four clusters (A, B, C1 and C2) of which Subcluster C2 was enriched for cases with a higher frequency of signature 16 mutations. Tumors of Subcluster C2 had significantly lower p16INK4A expression accompanied by homozygous CDKN2A deletion in almost one half of cases. Survival analysis revealed an unfavorable prognosis for patients with tumors characterized by a higher mutation burden attributed to signature 16 as well as cases in Subcluster C2. Finally, a LASSO-Cox regression model was applied to prioritize clinically relevant signatures and to establish a prognostic risk score for head and neck squamous cell carcinoma patients. In conclusion, our study provides a proof of concept that computational analysis of somatic mutational signatures is not only a powerful tool to decipher environmental and intrinsic processes in the pathogenesis of HNC, but could also pave the way to establish reliable prognostic patterns.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Alemanha/epidemiologia , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/patologia , Papillomavirus Humano 16/isolamento & purificação , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , RNA-Seq , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Uso de Tabaco/efeitos adversos , Uso de Tabaco/epidemiologia , Sequenciamento do Exoma
18.
Cancer Res ; 80(22): 4918-4931, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32973084

RESUMO

Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Cromotripsia , Rearranjo Gênico , Recidiva Local de Neoplasia/genética , Algoritmos , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 17 , Ciclina D1/genética , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Feminino , Fusão Gênica , Genes BRCA1 , Genes BRCA2 , Genes erbB-2 , Genes p53 , Humanos , Mutação INDEL , Transdução de Sinais , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
19.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818467

RESUMO

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Assuntos
L-Aminoácido Oxidase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioma/imunologia , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos
20.
Nat Commun ; 11(1): 2320, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385320

RESUMO

Chromothripsis is a recently identified mutational phenomenon, by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosome(s). Considered as an early event in tumour development, this form of genome instability plays a prominent role in tumour onset. Chromothripsis prevalence might have been underestimated when using low-resolution methods, and pan-cancer studies based on sequencing are rare. Here we analyse chromothripsis in 28 tumour types covering all major adult cancers (634 tumours, 316 whole-genome and 318 whole-exome sequences). We show that chromothripsis affects a substantial proportion of human cancers, with a prevalence of 49% across all cases. Chromothripsis generates entity-specific genomic alterations driving tumour development, including clinically relevant druggable fusions. Chromothripsis is linked with specific telomere patterns and univocal mutational signatures in distinct tumour entities. Longitudinal analysis of chromothriptic patterns in 24 matched tumour pairs reveals insights in the clonal evolution of tumours with chromothripsis.


Assuntos
Cromotripsia , Neoplasias/genética , Adulto , Genoma Humano/genética , Instabilidade Genômica/genética , Humanos , Telômero/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA