Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1321317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38229883

RESUMO

Foxg1 is a key regulator of the early development of the vertebrate forebrain and sensory organs. In this study, we describe for the first time three foxg1 paralogues in lamprey, representative of one of two basally diverged lineages of vertebrates-the agnathans. We also first describe three foxg1 genes in sterlet-representative of one of the evolutionarily ancient clades of gnathostomes. According to the analysis of local genomic synteny, three foxg1 genes of agnathans and gnathostomes have a common origin as a result of two rounds of genomic duplications in the early evolution of vertebrates. At the same time, it is difficult to reliably establish pairwise orthology between foxg1 genes of agnathans and gnathostomes based on the analysis of phylogeny and local genomic synteny, as well as our studies of the spatiotemporal expression of foxg1 genes in the river lamprey Lampetra fluviatilis and the sterlet Acipenser ruthenus. Thus, the appearance of three foxg1 paralogues in agnathans and gnathostomes could have occurred either as a result of two rounds of duplication of the vertebrate common ancestor genome (2R hypothesis) or as a result of the first common round followed by subsequent independent polyploidizations in two evolutionary lineages (1R hypothesis).

2.
Genesis ; 57(5): e23293, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912273

RESUMO

The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood. Despite that the receptor to Agr2, the membrane anchored protein Prod1, has been firstly discovered in Urodeles, and it has been shown to interact with Agr2 in the regenerating limb, no functional homologs of Prod1 were identified in other vertebrates. This raises the question of the mechanisms by which Agrs can regulate regeneration in other lower vertebrates. Recently, we have identified that Tfp4 (three-fingers Protein 4), the structural and functional homolog of Prod1 in Anurans, interacts with Agr2 in Xenopus laevis embryos. In the present work we show by several methods that the activity of Tfp4 is essential for the tadpole tail regeneration as well as for the early eye and forebrain development during embryogenesis. These data show for the first time the common molecular mechanism of regeneration regulation in amphibians by interaction of Prod1 and Agr2 proteins.


Assuntos
Arginase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário , Extremidades/embriologia , Larva/genética , Larva/metabolismo , Organogênese , Ligação Proteica/fisiologia , Regeneração/genética , Tiorredoxinas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(50): 12728-12732, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478037

RESUMO

Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.


Assuntos
Fungos/genética , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Animais , Vias Biossintéticas/genética , Ácidos Cafeicos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Duplicação Gênica/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Alinhamento de Sequência , Xenopus laevis
4.
Dev Biol ; 380(1): 37-48, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685334

RESUMO

Zyxin is a cytoskeletal protein that controls cell movements by regulating actin filaments assembly, but it can also modulate gene expression owing to its interactions with the proteins involved in signaling cascades. Therefore, identification of proteins that interact with Zyxin in embryonic cells is a promising way to unravel mechanisms responsible for coupling of two major components of embryogenesis: morphogenetic movements and cell differentiation. Now we show that in Xenopus laevis embryos Zyxin can bind to and suppress activity of the primary effector of Sonic hedgehog (Shh) signaling cascade, the transcription factor Gli1. By using loss- and gain-of-function approaches, we demonstrate that Zyxin is essential for reduction of Shh signaling within the dorsal part of the neural tube of X. laevis embryo. Thus, our finding discloses a novel function of Zyxin in fine tuning of the central neural system patterning which is based on the ventral-to-dorsal gradient of Shh signaling.


Assuntos
Sistema Nervoso Central/embriologia , Proteínas Hedgehog/metabolismo , Proteínas Oncogênicas/metabolismo , Transativadores/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Zixina/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Proteína GLI1 em Dedos de Zinco
5.
Biochem J ; 435(1): 65-71, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214518

RESUMO

Proteins of the GFP (green fluorescent protein) family are widely used as passive reporters for live cell imaging. In the present study we used H2B (histone H2B)-tKR (tandem KillerRed) as an active tool to affect cell division with light. We demonstrated that H2B-tKR-expressing cells behave normally in the dark, but transiently cease proliferation following green-light illumination. Complete light-induced blockage of cell division for approx. 24 h was observed in cultured mammalian cells that were either transiently or stably transfected with H2B-tKR. Illuminated cells then returned to normal division rate. XRCC1 (X-ray cross complementing factor 1) showed immediate redistribution in the illuminated nuclei of H2B-tKR-expressing cells, indicating massive light-induced damage of genomic DNA. Notably, nondisjunction of chromosomes was observed for cells that were illuminated during metaphase. In transgenic Xenopus embryos expressing H2B-tKR under the control of tissue-specific promoters, we observed clear retardation of the development of these tissues in green-light-illuminated tadpoles. We believe that H2B-tKR represents a novel optogenetic tool, which can be used to study mitosis and meiosis progression per se, as well as to investigate the roles of specific cell populations in development, regeneration and carcinogenesis in vivo.


Assuntos
Divisão Celular/efeitos da radiação , Cromatina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Sondas Moleculares/metabolismo , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Núcleo Celular/metabolismo , Cromatina/efeitos da radiação , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Luz , Proteínas Luminescentes/genética , Sondas Moleculares/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/ultraestrutura , Transporte Proteico/efeitos da radiação , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Xenopus laevis
6.
Dev Dyn ; 237(3): 736-49, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18297730

RESUMO

The question of how subdivision of embryo into cell territories acquiring different fates is coordinated with morphogenetic movements shaping the embryonic body still remains poorly resolved. In the present report, we demonstrate that a key regulator of anterior neural plate patterning, the homeodomain transcriptional repressor Xanf1/Hesx1, can bind to the LIM-domain protein Zyxin, which is known to regulate cell morphogenetic movements via influence on actin cytoskeleton dynamics. Using a set of deletion mutants, we found that the Engrailed-type repressor domain of Xanf1 and LIM2-domain of Zyxin are primarily responsible for interaction of these proteins. We also demonstrate that Zyxin overexpression in Xenopus embryos elicits effects similar to those observed in embryos with downregulated Xanf1. In contrast, when the repressor-fused variant of Zyxin is expressed, the forebrain enlargements typical for embryos overexpressing Xanf1 develop. These results are consistent with a possible role of Zyxin as a negative modulator of Xanf1 transcriptional repressing activity.


Assuntos
Embrião não Mamífero/metabolismo , Proteínas de Homeodomínio/metabolismo , Metaloproteínas/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal , Linhagem Celular , Citoesqueleto/metabolismo , Embrião não Mamífero/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Haplorrinos , Proteínas de Homeodomínio/química , Metaloproteínas/química , Metaloproteínas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transcrição Gênica , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis , Zixina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA