Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Am Chem Soc ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315452

RESUMO

We report a simple, direct, and green conversion of air/N2 to nitric acid by bubbling the gas through an aqueous solution containing 50 µM Fe2+ ions. Air stone, along with ultrasonication, was employed to generate gas microbubbles. H2O2 produced at the water-gas interface undergoes Fenton's reaction with Fe2+ ions to produce OH• that efficiently activates N2, yielding nitric acid as the final product. Nitrate (NO3-) formation occurs without the use of any external electric potential or radiation. The concentration of NO3- increased linearly with time over a period of 132 h. The average NO3- production rate is found to be 12.9 ± 0.05 µM h-1. We envision that this nitrogen fixation strategy that produces nitric acid in an eco-friendly way might open the possibility for the energy-efficient and green production of nitric acid.

2.
J Am Chem Soc ; 146(15): 10868-10874, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573037

RESUMO

Liquid water provides the largest hydrogen reservoir on the earth's surface. Direct utilization of water as a source of hydrogen atoms and molecules is fundamental to the evolution of the ecosystem and industry. However, liquid water is an unfavorable electron donor for forming these hydrogen species owing to its redox inertness. We report oil-mediated electron extraction from water microdroplets, which is easily achieved by ultrasonically spraying an oil-water emulsion. Based on charge measurement and electron paramagnetic resonance spectroscopy, contact electrification between oil and a water microdroplet is demonstrated to be the origin of electron extraction from water molecules. This contact electrification results in enhanced charge separation and subsequent mutual neutralization, which enables a ∼13-fold increase of charge carriers in comparison with an ultrapure water spray, leading to a ∼16-fold increase of spray-sourced hydrogen that can hydrogenate CO2 to selectively produce CO. These findings emphasize the potential of charge separation enabled by spraying an emulsion of liquid water and a hydrophobic liquid in driving hydrogenation reactions.

3.
Metabolites ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535320

RESUMO

Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging (IDESI-MSI) has proven to be a robust and reliable tool for chemically imaging biological samples such as fungi, animal tissues, and plants, but the choice of the imprint substrate is crucial. It must effectively transfer maximum amounts of species from the sample while preserving the original spatial distribution of detected molecules. In this study, we explored the potential of utilizing an oil-absorbing film, known for its soft nature and excellent lipophilicity, as an imprint substrate for IDESI-MSI on biological samples. To assess the transfer efficiency of the amounts of molecules and molecular patterns, we conducted experiments using mouse brain tissue. The result shows that more than 90% of the analytes can be transferred to the oil-absorbing film from the original tissue. A comparison of IDESI-MSI results between the oil-absorbing film and the original tissue demonstrates the material's capability to transfer most molecules from the original tissue and retain images of different analytes with high spatial fidelity. We extended our investigation to plant imaging, where we applied IDESI-MSI to a cross-section of okra. The oil-absorbing film exhibited promise in this context as well. These findings suggest that IDESI-MSI utilizing the oil-absorbing film holds potential across various research fields, including biological metabolism, chemistry, and clinical research, making this technique widely applicable.

4.
Anal Chem ; 96(1): 28-32, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38155587

RESUMO

We report a technique for the noninvasive detection of skin cancer by imprint desorption electrospray ionization mass spectrometry imaging (DESI-MSI) using a transfer agent that is pressed against the tissue of interest. By noninvasively pressing a tape strip against human skin, metabolites, fatty acids, and lipids on the skin surface are transferred to the tape with little spatial distortion. Running DESI-MSI on the tape strip provides chemical images of the molecules on the skin surface, which are valuable for distinguishing cancer from healthy skin. Chemical components of the tissue imprint on the tape strip and the original basal cell carcinoma (BCC) section from the mass spectra show high consistency. By comparing MS images (about 150-µm resolution) of same molecules from the tape strip and from the BCC section, we confirm that chemical patterns are successfully transferred to the tape stripe. We also used the technique to distinguish cherry angiomas from normal human skin by comparing the molecular patterns from a tape strip. These results demonstrate the potential of the imprint DESI-MSI technique for the noninvasive detection of skin cancers as well as other skin diseases before and during clinical surgery.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Carcinoma Basocelular/diagnóstico , Ácidos Graxos
5.
Proc Natl Acad Sci U S A ; 120(34): e2304735120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590411

RESUMO

Synthetic amorphous silica is a common food additive and a popular cosmetic ingredient. Mesoporous silica particles are also widely studied for their potential use in drug delivery and imaging applications because of their unique properties, such as tunable pore sizes, large surfaces areas, and assumed biocompatibility. Such a nanomaterial, when consisting of pure silicon dioxide, is generally considered to be chemically inert, but in this study, we showed that oxidation yields for different compounds were facilitated by simply incubating aqueous solutions with pure silica particles. Three thiol-containing molecules, L-cysteine, glutathione, and D-penicillamine, were studied separately, and it was found that more than 95% of oxidation happened after incubating any of these compounds with mesoporous silica particles in the dark for a day at room temperature. Oxidation increased over incubation time, and more oxidation was found for particles having larger surface areas. For nonporous silica particles at submicron ranges, yields of oxidation were different based on the structures of molecules, correlating with steric hindrance while accessing surfaces. We propose that the silyloxy radical (SiO•) on silica surfaces is what facilitates oxidation. Density functional theory calculations were conducted for total energy changes for reactions between different aqueous species and silicon dioxide surfaces. These calculations identified two most plausible pathways of the lowest energy to generate SiO• radicals from water radical cations H2O•+ and hydroxyl radicals •OH, previously known to exist at water interfaces.

6.
JCO Precis Oncol ; 7: e2200668, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37285559

RESUMO

PURPOSE: Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes. MATERIALS AND METHODS: Here, we extended our combined desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC) tissues. RESULTS: From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC), respectively. The majority of the model's selected features show consistent trends across data sets affirming its stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular feature of ccRCC and pRCC. CONCLUSION: Together, these results indicate that signatures derived from DESI-MSI combined with machine learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those reported for IFS.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/cirurgia , Rim/metabolismo , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Espectrometria de Massas , Aprendizado de Máquina
7.
RSC Adv ; 12(36): 23337-23345, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090393

RESUMO

On-demand drug delivery systems are promising for a wide range of therapeutic applications. When combined with wireless implants for controlled drug delivery, they can reduce overall dosage and side effects. Here, we demonstrate release of fluorescein from a novel on-demand release system for negatively charged compounds. The release system is based on a modified electroresponsive polypyrrole nanoparticulate film designed to minimize ion exchange with the stored compound - a major passive leakage mechanism. We further designed an ultrasonically powered mm-sized implant to electronically control the on-demand drug delivery system in vivo. Release kinetics are characterized both in vitro and in vivo in mice using fluorescein as a model drug, demonstrating the feasibility of wireless, controllable drug release using an ultrasonically powered implant.

8.
Chem Sci ; 13(28): 8341-8348, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919726

RESUMO

Enzyme-photo-coupled catalysis produces fine chemicals by combining the high selectivity of an enzyme with the green energy input of sunlight. Operating a large-scale system, however, remains challenging because of the significant loss of enzyme activity caused by continuous illumination and the difficulty in utilizing solar energy with high efficiency at large scale. We present a large-scale enzyme-photo-coupled catalysis system based on gas-sprayed microdroplets. By this means, we demonstrate a 43.6-71.5 times improvement of solar energy utilization over that using a traditional bulk processing system. Owing to the improved enzyme activity in microdroplets, we show that chiral alcohols can be produced with up to a 2.2-fold increase in the reaction rate and a 5.6-fold increase in final product concentration.

9.
Anal Chem ; 94(28): 10278-10282, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797218

RESUMO

A pulsed (10 Hz) infrared (IR) (1064 nm) laser is focused on a sample surface by means of a microlensed fiber. Analytes desorbed from the surface are captured by charged microdroplets before entering a mass spectrometer. By translating the sample surface, a chemical map is generated with a resolution of 5 µm, defined as the change from 20 to 80% of the analyte signal intensity. As a demonstration of the power of this new imaging technique, analytes from a parsnip root section are imaged and compared with that obtained from conventional laser ablation electrospray ionization mass spectrometry. The improvement in spatial resolution is about a factor of 20.


Assuntos
Terapia a Laser , Espectrometria de Massas por Ionização por Electrospray , Lasers , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
J Am Soc Mass Spectrom ; 33(7): 1238-1249, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35647885

RESUMO

Recent studies have shown that ultrafast enzymatic digestion of proteins can be achieved in microdroplet within 250 µs. Further investigation of peptides resulting from microdroplet digestion (MD) would be necessary to evaluate it as an alternative to the conventional bulk digestion for bottom-up and biotherapeutic protein characterization. Herein we examined and compared protein tryptic digestion in both MD and bulk solution. In the case of MD of ß-lactoglobulin B, the preservation of long peptides was observed due to the short digestion time. In addition, MD is applicable to digest both high- and low-abundance proteins in mixture. In the case of digesting NIST 8671 mAb antibody containing a low level of commonly encountered host cell protein (HCP) PLBL2 (mAb:PLBL2 = 100:1 by weight), MD produced lower levels of digestion-induced chemical modifications of asparagine/glutamine deamidation, compared with overnight digestion. No significant difference between MD and bulk digestion was observed in terms of trypsin digestion specificity based on examination of semi- and unspecific-cleaved peptides. Our study suggests that MD, a fast digestion approach, could be adopted for bottom-up proteomics research and for peptide mapping of mAbs to characterize site-specific deamidation and glycosylation, for the purpose of development of biopharmaceuticals.


Assuntos
Anticorpos Monoclonais , Peptídeos , Sequência de Aminoácidos , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Peptídeos/química , Proteólise , Tripsina/química
11.
ACS Med Chem Lett ; 13(4): 615-622, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450373

RESUMO

A natural compound screen identified several anticancer compounds, among which azapodophyllotoxin (AZP) was found to be the most potent. AZP caused decreased viability of both mouse and human lymphoma and renal cell cancer (RCC) tumor-derived cell lines. Novel AZP derivatives were synthesized and screened identifying compound NSC750212 to inhibit the growth of both lymphoma and RCC both in vitro and in vivo. A nanoimmunoassay was used to assess the NSC750212 mode of action in vivo. On the basis of the structure of AZP and its mode of action, AZP disrupts tubulin polymerization. Through desorption electrospray ionization mass spectrometry imaging, NSC750212 was found to inhibit lipid metabolism. NSC750212 suppresses monoglycerol metabolism depleting lipids and thereby inhibits tumor growth. The dual mode of tubulin polymerization disruption and monoglycerol metabolism inhibition makes NSC750212 a potent small molecule against lymphoma and RCC.

12.
Cell Rep Med ; 3(2): 100502, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243415

RESUMO

Among men, prostate cancer is the second leading cause of cancer-associated mortality, with advanced disease remaining a major clinical challenge. We describe a small molecule, SU086, as a therapeutic strategy for advanced prostate cancer. We demonstrate that SU086 inhibits the growth of prostate cancer cells in vitro, cell-line and patient-derived xenografts in vivo, and ex vivo prostate cancer patient specimens. Furthermore, SU086 in combination with standard of care second-generation anti-androgen therapies displays increased impairment of prostate cancer cell and tumor growth in vitro and in vivo. Cellular thermal shift assay reveals that SU086 binds to heat shock protein 90 (HSP90) and leads to a decrease in HSP90 levels. Proteomic profiling demonstrates that SU086 binds to and decreases HSP90. Metabolomic profiling reveals that SU086 leads to perturbation of glycolysis. Our study identifies SU086 as a treatment for advanced prostate cancer as a single agent or when combined with second-generation anti-androgens.


Assuntos
Neoplasias da Próstata , Proteômica , Proliferação de Células , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
13.
Cell Rep ; 38(9): 110453, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235785

RESUMO

Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.


Assuntos
Neoplasias das Glândulas Suprarrenais , Dioxigenases , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Animais , Carcinogênese/genética , Transformação Celular Neoplásica , Dioxigenases/metabolismo , Camundongos , Feocromocitoma/genética , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Succinatos , Ácido Succínico/metabolismo
14.
Metabolites ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34822386

RESUMO

Isobaric ions having the same mass-to-charge ratio cannot be separately identified by mass spectrometry (MS) alone, but this limitation can be overcome by using hydrogen-deuterium exchange (HDX) in microdroplets. Because isobaric ions may contain a varied number of exchangeable sites and different types of functional groups, each one produces a unique MS spectral pattern after droplet spray HDX without the need for MS/MS experiments or introduction of ion mobility measurements. As an example of the power of this approach, isobaric ions in urinary metabolic profiles are identified and used to distinguish between healthy individuals and those having bladder cancer.

15.
EBioMedicine ; 70: 103529, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34391097

RESUMO

BACKGROUND: Although there is consensus that the optimal safe margin is ≥ 5mm, obtaining clear margins (≥5 mm) intraoperatively seems to be the major challenge. We applied a molecular diagnostic method at the lipidomic level to determine the safe surgical resection margin of OSCC by desorption electrospray ionisation mass spectrometry imaging (DESI-MSI). METHODS: By overlaying mass spectrometry images with hematoxylin-eosin staining (H&E) from 18 recruited OSCC participants, the mass spectra of all pixels across the diagnosed tumour and continuous mucosal margin regions were extracted to serve as the training and validation datasets. A Lasso regression model was used to evaluate the test performance. FINDINGS: By leave-one-out validation, the Lasso model achieved 88.6% accuracy in distinguishing between tumour and normal regions. To determine the safe surgical resection distance and margin status of OSCC, a set of 14 lipid ions that gradually decreased from tumour to normal tissue was assigned higher weight coefficients in the Lasso model. The safe surgical resection distance of OSCC was measured using the developed 14 lipid ion molecular diagnostic model for clinical reference. The overall accuracy of predicting tumours, positive margins, and negative margins was 92.6%. INTERPRETATION: The spatial segmentation results based on our diagnostic model not only clearly delineated the tumour and normal tissue, but also distinguished the different status of surgical margins. Meanwhile, the safe surgical resection margin of OSCC on frozen sections can also be accurately measured using the developed diagnostic model. FUNDING: This study was supported by Nanjing Municipal Key Medical Laboratory Constructional Project Funding (since 2016) and the Centre of Nanjing Clinical Medicine Tumour (since 2014).


Assuntos
Carcinoma de Células Escamosas/patologia , Metabolismo dos Lipídeos , Margens de Excisão , Neoplasias Bucais/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/cirurgia , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/cirurgia , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Anal Chem ; 93(30): 10411-10417, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279072

RESUMO

We report that microdroplet hydrogen-deuterium exchange (HDX) detected by desorption electrospray ionization mass spectrometry imaging (DESI-MSI) allows the measurement of the acidity of a tissue sample. The integration of HDX and DESI-MSI has been applied to visualize the acidic tumor microenvironment (TME). HDX-DESI-MSI enables the simultaneous collection of regional pH variation and its corresponding in-depth metabolomic changes. This technique is a cost-effective tool for providing insight into the pH-dependent tumor metabolism heterogeneity.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massas por Ionização por Electrospray , Deutério , Hidrogênio , Microambiente Tumoral
17.
Front Oncol ; 11: 665763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968771

RESUMO

BACKGROUND: There is increasing evidence that adipocytes play an active role in the cancer microenvironment. We have previously reported that adipocytes interact with acute lymphoblastic leukemia (ALL) cells, contributing to chemotherapy resistance and treatment failure. In the present study, we investigated whether part of this resistance is due to adipocyte provision of lipids to ALL cells. METHODS: We cultured 3T3-L1 adipocytes, and tested whether ALL cells or ALL-released cytokines induced FFA release. We investigated whether ALL cells took up these FFA, and using fluorescent tagged BODIPY-FFA and lipidomics, evaluated which lipid moieties were being transferred from adipocytes to ALL. We evaluated the effects of adipocyte-derived lipids on ALL cell metabolism using a Seahorse XF analyzer and expression of enzymes important for lipid metabolism, and tested whether these lipids could protect ALL cells from chemotherapy. Finally, we evaluated a panel of lipid synthesis and metabolism inhibitors to determine which were affected by the presence of adipocytes. RESULTS: Adipocytes release free fatty acids (FFA) when in the presence of ALL cells. These FFA are taken up by the ALL cells and incorporated into triglycerides and phospholipids. Some of these lipids are stored in lipid droplets, which can be utilized in states of fuel deprivation. Adipocytes preferentially release monounsaturated FFA, and this can be attenuated by inhibiting the desaturating enzyme steroyl-CoA decarboxylase-1 (SCD1). Adipocyte-derived FFA can relieve ALL cell endogenous lipogenesis and reverse the cytotoxicity of pharmacological acetyl-CoA carboxylase (ACC) inhibition. Further, adipocytes alter ALL cell metabolism, shifting them from glucose to FFA oxidation. Interestingly, the unsaturated fatty acid, oleic acid, protects ALL cells from modest concentrations of chemotherapy, such as those that might be present in the ALL microenvironment. In addition, targeting lipid synthesis and metabolism can potentially reverse adipocyte protection of ALL cells. CONCLUSION: These findings uncover a previously unidentified interaction between ALL cells and adipocytes, leading to transfer of FFA for use as a metabolic fuel and macromolecule building block. This interaction may contribute to ALL resistance to chemotherapy, and could potentially be targeted to improve ALL treatment outcome.

18.
Sci Rep ; 10(1): 16859, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033365

RESUMO

Fluorescent molecular rotor dyes, including Cy3, Cy5, and Alexa Fluor 555, dissolved in micron-sized aqueous droplets (microdroplets) in oil were excited, and the fluorescence intensity was recorded as function of time. We observed lengthening of the fluorescence lifetime of these dyes at the water-oil periphery, which extended several microns inward. This behavior shows that intramolecular rotation is restricted at and near the microdroplet interface. Lengthened lifetimes were observed in water microdroplets but not in microdroplets composed of organic solvents. This lifetime change was relatively insensitive to added glycerol up to 60%, suggesting that solution viscosity is not the dominant mechanism. These restricted intramolecular rotations at and near the microdroplet periphery are consistent with the reduced entropy observed in chemical reactions in microdroplets compared to the same reaction conditions in bulk solution and helps us further understand why microdroplet chemistry differs so markedly from bulk-phase chemistry.

19.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028513

RESUMO

Cells contain more than 100 mM salt ions that are typically confined to dimensions of 5 to 10 micrometers by a hydrophobic cellular membrane. We found that in aqueous microdroplets having the same size as cells and that are confined in hydrocarbon oil, negatively charged molecules were distributed rather uniformly over the interior of the microdroplet, whereas positively charged molecules were localized at and near the surface. However, the addition of salt (NaCl) to the microdroplet caused all charged molecules to be localized near the oil-water interface. This salt-induced relocalization required less salt concentration in microdroplets compared to bulk water. Moreover, the localization became more prominent as the size of the microdroplet was reduced. The relocatization also critically depended on the type of oil. Our results imply that salt ions and different hydrophobic interfaces together may govern the local distribution of charged biomolecules in confined intracellular environments.

20.
Anal Chem ; 92(19): 13281-13289, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32880432

RESUMO

Cell-type-specific metabolic profiling in tissue with heterogeneous composition has been of great interest across all mass spectrometry imaging (MSI) technologies. We report here a powerful new chemical imaging capability in desorption electrospray ionization (DESI) MSI, which enables cell-type-specific and in situ metabolic profiling in complex tissue samples. We accomplish this by combining DESI-MSI with immunofluorescence staining using specific cell-type markers. We take advantage of the variable frequency of each distinct cell type in the lateral septal nucleus (LSN) region of mouse forebrain. This allows computational deconvolution of the cell-type-specific metabolic profile in neurons and astrocytes by convex optimization-a machine learning method. Based on our approach, we observed 107 metabolites that show different distributions and intensities between astrocytes and neurons. We subsequently identified 23 metabolites using high-resolution mass spectrometry (MS) and tandem MS, which include small metabolites such as adenosine and N-acetylaspartate previously associated with astrocytes and neurons, respectively, as well as accumulation of several phospholipid species in neurons which have not been studied before. Overall, this method overcomes the relatively low spatial resolution of DESI-MSI and provides a new platform for in situ metabolic investigation at the cell-type level in complex tissue samples with heterogeneous cell-type composition.


Assuntos
Astrócitos/metabolismo , Imunofluorescência , Prosencéfalo/metabolismo , Animais , Astrócitos/química , Astrócitos/citologia , Aprendizado de Máquina , Camundongos , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Prosencéfalo/química , Prosencéfalo/citologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA