Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 380, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907823

RESUMO

BACKGROUND: Melatonin is a multi-functional molecule widely employed in order to mitigate abiotic stress factors, in general and salt stress in particular. Even though previous reports revealed that melatonin could exhibit roles in promoting seed germination and protecting plants during various developmental stages of several plant species under salt stress, no reports are available with respect to the regulatory acts of melatonin on the physiological and biochemical status as well as the expression levels of defense- and secondary metabolism-related related transcripts in bitter melon subjected to the salt stress. RESULTS: Herewith the present study, we performed a comprehensive analysis of the physiological and ion balance, antioxidant system, as well as transcript analysis of defense-related genes (WRKY1, SOS1, PM H+-ATPase, SKOR, Mc5PTase7, and SOAR1) and secondary metabolism-related gene expression (MAP30, α-MMC, polypeptide-P, and PAL) in salt-stressed bitter melon (Momordica charantia L.) plants in response to melatonin treatment. In this regard, different levels of melatonin (0, 75 and 150 µM) were applied to mitigate salinity stress (0, 50 and 100 mM NaCl) in bitter melon. Accordingly, present findings revealed that 100 mM salinity stress decreased growth and photosynthesis parameters (SPAD, Fv/Fo, Y(II)), RWC, and some nutrient elements (K+, Ca2+, and P), while it increased Y(NO), Y(NPQ), proline, Na+, Cl-, H2O2, MDA, antioxidant enzyme activity, and lead to the induction of the examined genes. However, prsiming with 150 µM melatonin increased SPAD, Fv/Fo, Y(II)), RWC, and K+, Ca2+, and P concentration while decreased Y(NO), Y(NPQ), Na+, Cl-, H2O2, and MDA under salt stress. In addition, the antioxidant system and gene expression levels were increased by melatonin (150 µM). CONCLUSIONS: Overall, it can be postulated that the application of melatonin (150 µM) has effective roles in alleviating the adverse impacts of salinity through critical modifications in plant metabolism.


Assuntos
Melatonina , Momordica charantia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Momordica charantia/metabolismo , Plantas/metabolismo , Tolerância ao Sal/genética , Metabolismo Secundário
2.
J Sci Food Agric ; 98(15): 5632-5638, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29704237

RESUMO

BACKGROUND: The physiological and metabolic processes involved with grapevine growth and production are influenced by key macro- and micronutrients. Potassium is an essential plant nutrient that affects growth and fruit quality. In this study, the impact of foliar spraying of potassium sulfate (K2 SO4 ) on qualitative characteristics of grape berries was evaluated in the cultivar 'Rasha', a commonly cultivated cultivar in Kurdistan province of Iran. Leaves of the fully grown vines were sprayed with each of the 1.5 and 3 g L-1 K2 SO4 solutions once (1 month after petal senescence) and twice (15 days after first spraying). The control plants were sprayed with distilled water. Various biochemical contents and enzyme activities on the ripe berries were analyzed. RESULTS: Significant increases in anthocyanin, total protein content, and antioxidant enzyme activities were observed in the berries treated twice with 3 g L-1 K2 SO4 . Concentrations of total carbohydrate, phenol, and antioxidant activity in berries sprayed with K2 SO4 were higher than in the controls. We observed a strong correlation between antioxidant activity and different phenolic compounds. CONCLUSION: These findings suggest that K2 SO4 treatment influences biosynthesis of phenolic compounds and antioxidant enzymes. Thus, treatment by K2 SO4 could improve nutritional and qualitative attributes of grape. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Frutas/química , Sulfatos/farmacologia , Vitis/química , Antocianinas/química , Antocianinas/metabolismo , Antioxidantes/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Irã (Geográfico) , Fenóis/química , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Vitis/efeitos dos fármacos , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA