Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(3): e1020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529787

RESUMO

Flow cytometry stands as the most employed high-throughput single-cell analysis technique, facilitating the profiling of remarkably diverse samples, such as blood, bone marrow and body fluids. In addition, it allows for the discrimination of diverse immune cell subsets, including infrequently encountered types like T regulatory cells and exhausted CD28Null T cells. However, analyzing rare immune cell subsets with conventional flow cytometry poses challenges stemming from factors like fluorophore overlap, compensation issues, and limited flexibility in fluorophore selection. Therefore, spectral flow cytometry offers advantages over traditional flow cytometry. It measures the full emission spectrum and then separates it to identify different fluorochromes. This enables the use of fluorochromes with significant overlap in a single test, allowing for the analysis of more protein markers. Following this, spectral technology employs precise calculations to separate individual fluorochromes, thereby enabling the detection and elimination of autofluorescent signals originating from cells within the entire emission spectrum. This capability is pivotal in achieving deep phenotyping of immune cells with the requisite sensitivity and resolution essential for monitoring the immune systems of patients with compromised immunity, such as cancer and autoimmune disorders. Additionally, it allows for the exploration of interactions between distinct immune subsets. In this context, we introduce an optimized protocol utilizing spectral flow cytometry for precise T-cell characterization and differentiation, encompassing the assessment of their activation states. Furthermore, this protocol extends its applicability to the identification of less common circulating T-cell populations, notably T-regulatory and CD28Null T cells, following autofluorescence correction within the spectrum. This protocol provides a set of steps and reagents for the surface and intracellular staining of human T cells using whole peripheral blood. The spectral-based design of this panel allows for its applicability to other spectral machines, providing a versatile and efficient tool for T-cell analysis. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Achieving optimal staining through effective antibody titration Basic Protocol 2: Single-cell staining Basic Protocol 3: Comprehensive panel staining post-titration and spectral library integration.


Assuntos
Corantes Fluorescentes , Linfócitos T , Humanos , Citometria de Fluxo/métodos , Antígenos CD28
2.
Proc Natl Acad Sci U S A ; 120(22): e2219392120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216534

RESUMO

Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.


Assuntos
Bacteriocinas , Humanos , Bacteriocinas/farmacologia , Bacteriocinas/química , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos
3.
Int Immunopharmacol ; 107: 108655, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248946

RESUMO

Multiple efforts are currently underway to control and treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide. Despite all efforts, the virus that emerged in Wuhan city has rapidly spread globally and led to a public health emergency of international concern (PHEIC) due to the lack of approved antiviral therapy. Nevertheless, SARS-CoV-2 has had a significant influence on the evolution of cellular therapeutic approaches. Adoptive immune cell therapy is innovative and offers either promising prophylactic or therapy for patients with moderate-to-severe COVID-19. This approach is aimed at developing safety and providing secure and effective therapy in combination with standard therapy for all COVID-19 infected individuals. Based on the effective results of previous studies on both inflammatory and autoimmune diseases, various immune cell therapies against COVID-19 have been reviewed and discussed. It must be considered that the application of cell therapy for treatment and to eliminate infected respiratory cells could result in excessive inflammation, so this treatment must be used in combination with other treatments, despite its many beneficial efforts.


Assuntos
COVID-19 , COVID-19/terapia , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Inflamação , SARS-CoV-2
4.
Immunotherapy ; 12(12): 933-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635779

RESUMO

The major current focus on treating rheumatoid arthritis is to put an end to long-term treatments and instead, specifically block widespread immunosuppression by developing antigen-specific tolerance, while also permitting an intact immune response toward other antigens to occur. There have been promising preclinical findings regarding adoptive Treg cells immunotherapy with a critically responsible function in the prevention of autoimmunity, tissue repair and regeneration, which make them an attractive candidate to develop effective therapeutic approaches to achieve this interesting concept in many human immune-mediated diseases, such as rheumatoid arthritis. Ex vivo or invivo manipulation protocols are not only utilized to correct Treg cells defect, but also to benefit from their specific immunosuppressive properties by identifying specific antigens that are expressed in the inflamedjoint. The methods able to address these deficiencies can be considered as a target for immunity interventions to restore appropriate immune function.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA