Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 818: 137570, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000774

RESUMO

One of the prominent sign of Alzheimer's disease (AD) is structural changes in the hippocampus. Recently, the new methods used to treat this disease is transcranial electrical stimulation (tES). This study evaluated the effect of four primary standards of tES, including tDCS, tACS, tRNS, and tPCS on beta-amyloid 25-35 (Aß25-35)-induced structural changes in the CA1 region of hippocampus in male rats. For this purpose, rats weighing 250-275 g were selected, the cannula was embedded reciprocally into the hippocampi. Aß25-35 (5 µg/ 2.5 ml/ day) was infused reciprocally for four continuous days.Then, animals were then given tES for 6 days.Subsequently, structural changes in the hippocampal CA1 were evaluated using the stereological method. Aß25-35 resulted in loss of neurons (P < 0.01) and decreased hippocampal volume (P < 0.05). However, the administration of tES paradigms prevented these changes. The results proposed that through the improvement of hippocampal cell number and volume, tES paradigms can retain efficiency in remediating structural impairments in AD. From this, it can be concluded that other tES paradigms besides tDCS can also be considered for the treatment of AD.


Assuntos
Doença de Alzheimer , Estimulação Transcraniana por Corrente Contínua , Ratos , Masculino , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/induzido quimicamente , Estimulação Transcraniana por Corrente Contínua/métodos , Peptídeos beta-Amiloides/farmacologia , Hipocampo , Neurônios , Modelos Animais de Doenças
2.
BMC Neurosci ; 23(1): 6, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093027

RESUMO

BACKGROUND: In the horizon of therapeutic restrictions in intracerebral hemorrhage (ICH), recently, non-invasive transcranial electrical stimulation (tES) has achieved considerable prosperities. Translational studies have postulated that transcranial direct current stimulation (tDCS) and the other types of tES remain potentially a novel therapeutic option to reverse or stabilize cognitive and motor impairments. OBJECTIVE: The aim of this study was to comparatively evaluate the effects of the four main paradigms of tES, including tDCS, transcranial alternating (tACS), pulsed (tPCS), and random noise (tRNS) stimulations on collagenase-induced sensorimotor impairments and striatum tissue damage in male rats. METHODS: To induce ICH, 0.5 µl of collagenase was injected into the right striatum of male Sprague Dawley rats. One day after surgery, tES, was applied to the animals for seven consecutive days. Motor functions were appraised by neurological deficit score, rotarod, and wire hanging tests on the day before surgery and postoperative days 3, 7, and 14. After behavioral tests, brain tissue was prepared appropriately to perform the stereological evaluations. RESULTS: The results indicated that the application of the four tES paradigms (tDCS, tACS, tRNS, and tPCS) significantly reversed motor disorders in collagenase-induced ICH groups. Further, the motor function improvement of tACS and tRNS receiving rats in wire-hanging and rotarod tests were higher than the other two tES receiving groups. Structural changes and stereological assessments also confirmed the results of behavioral functions. CONCLUSION: Our findings suggest that in addition to tDCS application in the treatment of ICH, other tES paradigms, especially tACS and tRNS may be considered as add-on therapeutic strategies in stroke.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo/fisiologia , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/terapia , Colagenases , Masculino , Ratos , Ratos Sprague-Dawley , Estimulação Transcraniana por Corrente Contínua/métodos
3.
Brain Res Bull ; 174: 122-130, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116172

RESUMO

This study aimed to find out cellular and electrophysiological effects of the edaravone (EDR) administration following induction of vascular dementia (VaD) via bilateral-carotid vessel occlusion (2VO). The rats were randomly divided into control, sham, 2VO + V (vehicle), and 2VO + EDR groups. EDR was administered once a day from day 0-28 after surgery. The passive-avoidance, Morris water-maze, and open-field tests were used for evaluation of memory, locomotor, and anxiety. The field-potential recording was used for assessment of electrophysiological properties of the hippocampus; and after sacrificing, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. The long-term potentiation (LTP), paired-pulse ratio (PPR), and input-output (I/O) curves were evaluated as indexes for long-term and short-term synaptic plasticity, and basal-synaptic transmission (BST), respectively. The 2VO led to increases in MDA level with considerable neuronal loss and decreases in the volume of the hippocampus, along with a reduction in the BST and LTP induction which was associated with a decrement in PPR and ultimate loss in memory with higher anxiety behavior. However, administration of EDR caused a decline in MDA and prevented the neural loss and volume of the hippocampus, rescued BST and LTP depression, improved memory and anxiety without any effects on PPR. Therefore, most likely through the improvement of MDA level, and the hippocampal cell number and volume, EDR leads to recovery of synaptic plasticity and behavioral performance. Because of the LTP rescue, without recovery of PPR, it is likely that the EDR improved LTP through the post-synaptic neurons.


Assuntos
Demência Vascular/tratamento farmacológico , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Hipocampo/patologia , Animais , Antioxidantes/metabolismo , Aprendizagem da Esquiva , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/patologia , Estenose das Carótidas/psicologia , Doença Crônica , Demência Vascular/patologia , Demência Vascular/psicologia , Eletroencefalografia , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Atividade Motora , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
Eur J Pharmacol ; 736: 107-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24769303

RESUMO

Centrally administered streptozotocin (STZ), is known to cause Alzheimer׳s like memory deterioration. It mainly affects insulin signaling pathways such as PI3/Akt and GSK-3ß which are involved in cell survival. Previous studies indicate that STZ increases the ratio of Bax/Bcl-2 and thereby induces caspase-3 activation and apoptosis. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study aimed to assess if agmatine reverses STZ-induced memory deficits, hippocampal Akt/GSK-3ß signaling disruption and caspase-3 activation. Adult male Sprague-Dawely rats weighing 200-250 g were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg) and agmatine treatment (40 or 80 mg/kg) was started from day 4 and continued in an every other day manner till day 14. The animal׳s learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies the hippocampi was isolated and the amounts of hippocampal cleaved caspase-3 (the landmark of apoptosis), Bax/Bcl-2 ratio, total and phosphorylated forms of GSK-3ß and Akt were analyzed by western blot. The results showed that agmatine in 80 but not 40 mg/kg reversed the memory deterioration induced by STZ. Western blot analysis revealed that STZ prompted elevation of caspase-3; Bax/Bcl-2 ratio and disrupted Akt/GSK-3ß signaling in the hippocampus. Agmatine treatment prevented apoptosis and Akt/GSK-3ß signaling impairment induced by STZ. This study disclosed that agmatine treatment averts not only STZ-induced memory deterioration but also hippocampal apoptosis and Akt/GSK-3ß signaling disruption.


Assuntos
Agmatina/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Agmatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/administração & dosagem , Estreptozocina/efeitos adversos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA