Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271291

RESUMO

Mutations in splicing factor 3B subunit 1 (SF3B1) frequently occur in patients with chronic lymphocytic leukemia (CLL) and myelodysplastic syndromes (MDS). These mutations have different effects on the disease prognosis with beneficial effect in MDS and worse prognosis in CLL patients. A full-length transcriptome approach can expand our knowledge on SF3B1 mutation effects on RNA splicing and its contribution to patient survival and treatment options. We applied long-read transcriptome sequencing (LRTS) to 44 MDS and CLL patients, as well as two pairs of isogenic cell lines with and without SF3B1 mutations, and found >60% of novel isoforms. Splicing alterations were largely shared between cancer types and specifically affected the usage of introns and 3' splice sites. Our data highlighted a constrained window at canonical 3' splice sites in which dynamic splice site switches occurred in SF3B1-mutated patients. Using transcriptome-wide RNA binding maps and molecular dynamics simulations, we showed multimodal SF3B1 binding at 3' splice sites and predicted reduced RNA binding at the second binding pocket of SF3B1K700E Our work presents the hitherto most complete LRTS study of the SF3B1 mutation in CLL and MDS and provides a resource to study aberrant splicing in cancer. Moreover, we showed that different disease prognosis most likely results from the different cell types expanded during carcinogenesis rather than different mechanisms of action of the mutated SF3B1 These results have important implications for understanding the role of SF3B1 mutations in hematological malignancies and other related diseases.

2.
Biol Chem ; 405(4): 229-239, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37942876

RESUMO

HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.


Assuntos
Células Endoteliais , Ribonucleoproteínas Nucleares Heterogêneas , Ribonucleoproteínas Nucleares Heterogêneas/genética , Células Endoteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
4.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36620874

RESUMO

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Assuntos
Hipóxia Celular , Salpicos Nucleares , Splicing de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Processamento Alternativo , Éxons/genética , Fosfoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Células HeLa
5.
Nat Commun ; 13(1): 5570, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138008

RESUMO

Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by aberrant CD19 exon 2 processing, we herein investigate the regulatory code that controls CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to quantitatively disentangle the effects of all mutations in the region comprising CD19 exons 1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset represents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Sítios de Splice de RNA , Processamento Alternativo/genética , Antígenos CD19/genética , Antígenos CD19/metabolismo , Epitopos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Mutagênese/genética , Mutação , Recidiva Local de Neoplasia/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Isoformas de Proteínas/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Sci Adv ; 8(31): eabp9153, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921415

RESUMO

Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Precursores de RNA , Processamento Alternativo , Sítios de Ligação , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Precursores de RNA/genética , Sítios de Splice de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Cancer Res ; 82(7): 1380-1395, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105690

RESUMO

The activation and differentiation of cancer-associated fibroblasts (CAF) are involved in tumor progression. Here, we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE2) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE2 signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation. CAF proliferation upon EP3 inhibition required p38 MAPK signaling. Mechanistically, TGFß-activated kinase-like protein (TAK1L), which was identified as a negative regulator of p38 MAPK activation, was decreased following ablation of mPGES-1 or EP3. In contrast with its effects on primary tumor growth, disruption of PGE2 signaling in CAFs induced epithelial-to-mesenchymal transition in cancer organoids and promoted metastasis in mice. Moreover, TAK1L expression in CAFs was associated with decreased CAF activation, reduced metastasis, and prolonged survival in human breast cancer. These data characterize a new pathway of regulating inflammatory CAF activation, which affects breast cancer progression. SIGNIFICANCE: The inflammatory lipid prostaglandin E2 suppresses cancer-associated fibroblast expansion and activation to limit primary mammary tumor growth while promoting metastasis.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Carcinoma , Animais , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma/patologia , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Prostaglandina-E Sintases/farmacologia
8.
Nucleic Acids Res ; 49(16): e92, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157120

RESUMO

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.


Assuntos
Adenosina/análogos & derivados , Aprendizado de Máquina , Processamento Pós-Transcricional do RNA , RNA-Seq/métodos , Adenosina/química , Adenosina/metabolismo , Animais , Células HEK293 , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq/normas , Sensibilidade e Especificidade
9.
Genome Biol ; 22(1): 190, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183059

RESUMO

Resistance to CD19-directed immunotherapies in lymphoblastic leukemia has been attributed, among other factors, to several aberrant CD19 pre-mRNA splicing events, including recently reported excision of a cryptic intron embedded within CD19 exon 2. While "exitrons" are known to exist in hundreds of human transcripts, we discovered, using reporter assays and direct long-read RNA sequencing (dRNA-seq), that the CD19 exitron is an artifact of reverse transcription. Extending our analysis to publicly available datasets, we identified dozens of questionable exitrons, dubbed "falsitrons," that appear only in cDNA-seq, but never in dRNA-seq. Our results highlight the importance of dRNA-seq for transcript isoform validation.


Assuntos
Processamento Alternativo , Artefatos , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T/genética , Transcrição Reversa , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Pareamento de Bases , Sequência de Bases , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia/métodos , Íntrons , Modelos Biológicos , Conformação de Ácido Nucleico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Mensageiro/química , RNA Mensageiro/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
10.
Biophys J ; 118(8): 2027-2041, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32336349

RESUMO

Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.


Assuntos
Processamento Alternativo , Proto-Oncogenes , Éxons/genética , Íntrons/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA