Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1124, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932372

RESUMO

The intracellular bacterial pathogen Coxiella burnetii evades the host response by secreting effector proteins that aid in establishing a replication-friendly niche. Bacterial filamentation induced by cyclic AMP (Fic) enzymes can act as effectors by covalently modifying target proteins with the posttranslational AMPylation by transferring adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to a hydroxyl-containing side chain. Here we identify the gene product of C. burnetii CBU_0822, termed C. burnetii Fic 2 (CbFic2), to AMPylate host cell histone H3 at serine 10 and serine 28. We show that CbFic2 acts as a bifunctional enzyme, both capable of AMPylation as well as deAMPylation, and is regulated by the binding of DNA via a C-terminal helix-turn-helix domain. We propose that CbFic2 performs AMPylation in its monomeric state, switching to a deAMPylating dimer upon DNA binding. This study unveils reversible histone modification by a specific enzyme of a pathogenic bacterium.


Assuntos
Coxiella burnetii , AMP Cíclico , Histonas , DNA , Serina
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674725

RESUMO

Infection by Coxiella burnetii, the etiological agent of Q fever, poses the risk of causing severe obstetrical complications in pregnant women. C. burnetii is known for its placental tropism based on animal models of infection. The Nine Mile strain has been mostly used to study C. burnetii pathogenicity but the contribution of human isolates to C. burnetii pathogenicity is poorly understood. In this study, we compared five C. burnetii isolates from human placentas with C. burnetii strains including Nine Mile (NM) as reference. Comparative genomic analysis revealed that the Cb122 isolate was distinct from other placental isolates and the C. burnetii NM strain with a set of unique genes involved in energy generation and a type 1 secretion system. The infection of Balb/C mice with the Cb122 isolate showed higher virulence than that of NM or other placental isolates. We evaluated the pathogenicity of the Cb122 isolate by in vitro and ex vivo experiments. As C. burnetii is known to infect and survive within macrophages, we isolated monocytes and placental macrophages from healthy donors and infected them with the Cb122 isolate and the reference strain. We showed that bacteria from the Cb122 isolate were less internalized by monocyte-derived macrophages (MDM) than NM bacteria but the reference strain and the Cb122 isolate were similarly internalized by placental macrophages. The Cb122 isolate and the reference strain survived similarly in the two macrophage types. While the Cb122 isolate and the NM strain stimulated a poorly inflammatory program in MDM, they elicited an inflammatory program in placenta macrophages. We also reported that the Cb122 isolate and NM strain were internalized by trophoblastic cell lines and primary trophoblasts without specific replicative profiles. Placental explants were then infected with the Cb122 isolate and the NM strain. The bacteria from the Cb122 isolate were enriched in the chorionic villous foetal side. It is likely that the Cb122 isolate exhibited increased virulence in the multicellular environment provided by explants. Taken together, these results showed that the placental isolate of C. burnetii exhibits a specific infectious profile but its pathogenic role is not as high as the host immune response in pregnant women.


Assuntos
Coxiella burnetii , Febre Q , Animais , Camundongos , Feminino , Humanos , Gravidez , Coxiella burnetii/genética , Placenta/patologia , Macrófagos , Trofoblastos/patologia
3.
Gut Microbes ; 13(1): 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573443

RESUMO

Tropheryma whipplei, is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human ß-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, ß-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo. Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo. Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.


Assuntos
Proteínas Sanguíneas/metabolismo , Galectina 1/metabolismo , Galectinas/metabolismo , Tropheryma/patogenicidade , Doença de Whipple/metabolismo , Proteínas de Bactérias/metabolismo , Galactose/metabolismo , Galectina 1/sangue , Galectinas/sangue , Glicoproteínas/metabolismo , Glicosilação , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Polissacarídeos Bacterianos/metabolismo , Tropheryma/metabolismo , Virulência , Doença de Whipple/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA