Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
EBioMedicine ; 103: 105127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677183

RESUMO

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.


Assuntos
Tecido Adiposo Branco , Fígado Gorduroso , Obesidade , Oxilipinas , Humanos , Obesidade/metabolismo , Obesidade/complicações , Feminino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Masculino , Oxilipinas/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Pessoa de Meia-Idade , Adulto , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Biomarcadores , Espectrometria de Massas em Tandem
2.
J Allergy Clin Immunol Glob ; 3(1): 100192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38187868

RESUMO

Background: The National Asthma Education and Prevention Program guidelines emphasize environmental control as an integral part of asthma management; however, limited national-level data exist on how clinicians implement environmental control recommendations. Objective: We analyzed data on clinicians' self-reported use of recommended environmental control practices in a nationally representative sample (n = 1645) of primary care physicians, asthma specialists, and advanced practice providers from the National Asthma Survey of Physicians, a supplemental questionnaire to the 2012 National Ambulatory Medical Care Survey. Methods: We examined clinician and practice characteristics as well as clinicians' decisions and strategies regarding environmental trigger assessment and environmental control across provider groups. Regression modeling was used to identify clinician and practice characteristics associated with implementation of guideline recommendations. Results: A higher percentage of specialists assessed asthma triggers at home, school, and/or work than primary care or advanced practice providers (almost always: 53.6% vs 29.4% and 23.7%, respectively, P < .001). Almost all clinicians (>93%) recommended avoidance of secondhand tobacco smoke, whereas recommendations regarding cooking appliances (eg, proper ventilation) were infrequent. Although assessment and recommendation practices differed between clinician groups, modeling results showed that clinicians who reported almost always assessing asthma control were 5- to 6-fold more likely to assess environmental asthma triggers. Use of asthma action plans was also strongly associated with implementation of environmental control recommendations. Conclusions: Environmental assessment and recommendations to patients varied among asthma care providers. High adherence to other key guideline components, such as assessing asthma control, was associated with environmental assessment and recommendation practices on environmental control.

3.
FASEB J ; 37(7): e23009, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37273180

RESUMO

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Assuntos
Neoplasias do Colo , Ácido Linoleico , Humanos , Camundongos , Animais , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Eicosanoides , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Neoplasias do Colo/etiologia
4.
Arthritis Rheumatol ; 74(12): 2032-2041, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054084

RESUMO

OBJECTIVE: Growing evidence suggests increasing frequencies of autoimmunity and autoimmune diseases, but findings are limited by the lack of systematic data and evolving approaches and definitions. This study was undertaken to investigate whether the prevalence of antinuclear antibodies (ANA), the most common biomarker of autoimmunity, changed over a recent 25-year span in the US. METHODS: Serum ANA were measured by standard indirect immunofluorescence assays on HEp-2 cells in 13,519 participants age ≥12 years from the National Health and Nutrition Examination Survey, with approximately one-third from each of 3 time periods: 1988-1991, 1999-2004, and 2011-2012. We used logistic regression adjusted for sex, age, race/ethnicity, and survey design variables to estimate changes in ANA prevalence across the time periods. RESULTS: The prevalence of ANA was 11.0% (95% confidence interval [95% CI] 9.7-12.6%) in 1988-1991, 11.4% (95% CI 10.2-12.8%) in 1999-2004, and 16.1% (95% CI 14.4-18.0%) in 2011-2012 (P for trend <0.0001), corresponding to ~22.3 million, ~26.6 million, and ~41.5 million affected individuals, respectively. Among adolescents age 12-19 years, ANA prevalence increased substantially, with odds ratios of 2.07 (95% CI 1.18-3.64) and 2.77 (95% CI 1.56-4.91) in the second and third time periods relative to the first (P for trend = 0.0004). ANA prevalence increased in both sexes (especially in men), older adults (age ≥50 years), and non-Hispanic white individuals. These increases in ANA prevalence were not explained by concurrent trends in weight (obesity/overweight), smoking exposure, or alcohol consumption. CONCLUSION: The prevalence of ANA in the US has increased considerably in recent years. Additional studies to determine factors underlying these increases in ANA prevalence could elucidate causes of autoimmunity and enable the development of preventative measures.


Assuntos
Anticorpos Antinucleares , Doenças Autoimunes , Masculino , Adolescente , Feminino , Estados Unidos/epidemiologia , Humanos , Idoso , Criança , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Prevalência , Inquéritos Nutricionais , Técnica Indireta de Fluorescência para Anticorpo
5.
Metabolism ; 134: 155266, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868524

RESUMO

INTRODUCTION: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS: CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.


Assuntos
Neovascularização de Coroide , Ácidos Graxos Ômega-3 , Degeneração Macular , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Citocromo P-450 CYP2C8/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Insaturados/uso terapêutico , Flunarizina/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH-Ferri-Hemoproteína Redutase
6.
Respir Res ; 23(1): 150, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681205

RESUMO

BACKGROUND: Oxidative stress plays a key role in the pathogenesis of respiratory diseases; however, studies on antioxidant vitamins and respiratory outcomes have been conflicting. We evaluated whether lower serum levels of vitamins A, C, D, and E are associated with respiratory morbidity and mortality in the U.S. adult population. METHODS: We conducted a pooled analysis of data from the 1988-1994 and 1999-2006 National Health and Nutrition Examination Survey (participants aged ≥ 20 years). We estimated covariate-adjusted odds ratios (aOR) per interquartile decrease in each serum vitamin level to quantify associations with respiratory morbidity, and covariate-adjusted hazard ratios (aHR) to quantify associations with respiratory mortality assessed prospectively through 2015. Vitamin supplementation and smoking were evaluated as potential effect modifiers. RESULTS: Lower serum vitamin C increased the odds of wheeze among all participants (overall aOR: 1.08, 95% CI: 1.01-1.16). Among smokers, lower serum α-tocopherol vitamin E increased the odds of wheeze (aOR: 1.11, 95% CI: 1.04-1.19) and chronic bronchitis/emphysema (aOR: 1.13, 95% CI: 1.03-1.24). Conversely, lower serum γ-tocopherol vitamin E was associated with lower odds of wheeze and chronic bronchitis/emphysema (overall aORs: 0.85, 95% CI: 0.79-0.92 and 0.85, 95% CI: 0.76-0.95, respectively). Lower serum vitamin C was associated with increased chronic lower respiratory disease (CLRD) mortality in all participants (overall aHR: 1.27, 95% CI: 1.07-1.51), whereas lower serum 25-hydroxyvitamin D (25-OHD) tended to increase mortality from CLRD and influenza/pneumonia among smokers (aHR range: 1.33-1.75). Mortality from influenza/ pneumonia increased with decreasing serum vitamin A levels in all participants (overall aHR: 1.21, 95% CI: 0.99-1.48). In pooled analysis, vitamin C deficiency and 25-OHD insufficiency were associated with mortality from influenza/pneumonia, increasing mortality risk up to twofold. CONCLUSIONS: Our analysis of nationally representative data on over 34,000 participants showed that lower serum levels of vitamins A, C, D, and α-tocopherol vitamin E are associated with increased respiratory morbidity and/or mortality in U.S. adults. The results underscore the importance of antioxidant vitamins in respiratory health.


Assuntos
Bronquite Crônica , Enfisema , Influenza Humana , Adulto , Antioxidantes , Ácido Ascórbico , Humanos , Morbidade , Inquéritos Nutricionais , Vitamina A , Vitaminas , alfa-Tocoferol
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34732583

RESUMO

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that O-glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that O-glycosylation is dependent on the novel proline at position 681 (P681). Mutations of P681 seen in the highly transmissible alpha and delta variants abrogate O-glycosylation, increase furin cleavage, and increase syncytia formation. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that host O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the role of the P681 mutations found in the highly transmissible alpha and delta variants.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Fusão Celular , Linhagem Celular , Furina/metabolismo , Células Gigantes , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
8.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591792

RESUMO

Epoxyeicosatrienoic acids (EETs) have potent antiinflammatory properties. Hydrolysis of EETs by soluble epoxide hydrolase/ epoxide hydrolase 2 (sEH/EPHX2) to less active diols attenuates their antiinflammatory effects. Macrophage activation is critical to many inflammatory responses; however, the role of EETs and sEH in regulating macrophage function remains unknown. Lung bacterial clearance of Streptococcus pneumoniae was impaired in Ephx2-deficient (Ephx2-/-) mice and in mice treated with an sEH inhibitor. The EET receptor antagonist EEZE restored lung clearance of S. pneumoniae in Ephx2-/- mice. Ephx2-/- mice had normal lung Il1b, Il6, and Tnfa expression levels and macrophage recruitment to the lungs during S. pneumoniae infection; however, Ephx2 disruption attenuated proinflammatory cytokine induction, Tlr2 and Pgylrp1 receptor upregulation, and Ras-related C3 botulinum toxin substrates 1 and 2 (Rac1/2) and cell division control protein 42 homolog (Cdc42) activation in PGN-stimulated macrophages. Consistent with these observations, Ephx2-/- macrophages displayed reduced phagocytosis of S. pneumoniae in vivo and in vitro. Heterologous overexpression of TLR2 and peptidoglycan recognition protein 1 (PGLYRP1) in Ephx2-/- macrophages restored macrophage activation and phagocytosis. Human macrophage function was similarly regulated by EETs. Together, these results demonstrate that EETs reduced macrophage activation and phagocytosis of S. pneumoniae through the downregulation of TLR2 and PGLYRP1 expression. Defining the role of EETs and sEH in macrophage function may lead to the development of new therapeutic approaches for bacterial diseases.


Assuntos
Eicosanoides/fisiologia , Epóxido Hidrolases/fisiologia , Pulmão/imunologia , Macrófagos/imunologia , Fagocitose/fisiologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas de Transporte/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moléculas com Motivos Associados a Patógenos/farmacologia , Receptor 2 Toll-Like/fisiologia
9.
Toxicol Res ; 37(3): 285-292, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295793

RESUMO

Microsomal epoxide hydrolase/epoxide hydrolase 1 (mEH/EPHX1) works in conjunction with cytochromes P450 to metabolize a variety of compounds, including xenobiotics, pharmaceuticals and endogenous lipids. mEH has been most widely studied for its role in metabolism of xenobiotic and pharmaceutical compounds where it converts hydrophobic and reactive epoxides to hydrophilic diols that are more readily excreted. Inhibition or genetic disruption of mEH can be deleterious in the face of many industrial, environmental or pharmaceutical exposures and EPHX1 polymorphisms are associated with the development of exposure-related cancers. The role of mEH in endogenous epoxy-fatty acid (EpFA) metabolism has been less well studied. In vitro, mEH metabolizes most EpFAs at a far slower rate than soluble epoxide hydrolase (sEH) and has thus been generally considered to exert a minor role in EpFA metabolism in vivo. Indeed, sEH inhibitors or sEH-deficiency increase EpFA levels and are protective in animal models of cardiovascular disease. Recently, however, mEH was found to have a previously unrecognized and substantial role in EpFA metabolism in vivo. While few studies have examined the role of mEH in cardiovascular homeostasis, there is now substantial evidence that mEH can regulate cardiovascular function through regulation of EpFA metabolism. The discovery of a prominent role for mEH in epoxyeicosatrienoic acid (EET) metabolism, in particular, suggests that additional studies on the role of mEH in cardiovascular biology are warranted.

10.
Nutrients ; 13(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072678

RESUMO

The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.


Assuntos
Anti-Inflamatórios , Antioxidantes , Produtos Biológicos , Doenças Metabólicas , Animais , Suplementos Nutricionais , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Camundongos , Nanopartículas , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos
11.
J Mol Cell Cardiol ; 154: 80-91, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33378686

RESUMO

Obesity-driven cardiac lipid accumulation can progress to lipotoxic cardiomyopathy. Soluble epoxide hydrolase (sEH) is the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), which have biological activity of regulating lipid metabolism. The current study explores the unknown role of sEH deficiency in lipotoxic cardiomyopathy and its underlying mechanism. Wild-type and Ephx2 knock out (sEH KO) C57BL/6 J mice were fed with high-fat diet (HFD) for 24 weeks to induce lipotoxic cardiomyopathy animal models. Palmitic acid (PA) was utilized to induce lipotoxicity to cardiomyocytes for in vitro study. We found sEH KO, independent of plasma lipid and blood pressures, significantly attenuated HFD-induced myocardial lipid accumulation and cardiac dysfunction in vivo. HFD-induced lipotoxic cardiomyopathy and dysfunction of adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin complex (AMPK-mTORC) signaling mediated lipid autophagy in heart were restored by sEH KO. In primary neonatal mouse cardiomyocytes, both sEH KO and sEH substrate EETs plus sEH inhibitor AUDA treatments attenuated PA-induced lipid accumulation. These effects were blocked by inhibition of AMPK or autophagy. The outcomes were supported by the results that sEH KO and EETs plus AUDA rescued HFD- and PA-induced impairment of autophagy upstream signaling of AMPK-mTORC, respectively. These findings revealed that sEH deficiency played an important role in attenuating myocardial lipid accumulation and provided new insights into treating lipotoxic cardiomyopathy. Regulation of autophagy via AMPK-mTORC signaling pathway is one of the underlying mechanisms.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Epóxido Hidrolases/deficiência , Miocárdio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout
13.
Arthritis Rheumatol ; 72(6): 1026-1035, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266792

RESUMO

OBJECTIVE: Growing evidence suggests increasing frequencies of autoimmunity and certain autoimmune diseases, but findings are limited by the lack of systematic data and evolving approaches and definitions. This study was undertaken to investigate whether the prevalence of antinuclear antibodies (ANA), the most common biomarker of autoimmunity, changed over a recent 25-year span in the US. METHODS: Serum ANA were measured by standard indirect immunofluorescence assays on HEp-2 cells in 14,211 participants age ≥12 years from the National Health and Nutrition Examination Survey, with approximately one-third from each of 3 time periods: 1988-1991, 1999-2004, and 2011-2012. We used logistic regression adjusted for sex, age, race/ethnicity, and survey design variables to estimate changes in ANA prevalence across the time periods. RESULTS: The prevalence of ANA was 11.0% (95% confidence interval [95% CI] 9.7-12.6%) in 1988-1991, 11.5% (95% CI 10.3-12.8%) in 1999-2004, and 15.9% (95% CI 14.3-17.6%) in 2011-2012 (P for trend < 0.0001), which corresponds to ~22 million, ~27 million, and ~41 million affected individuals, respectively. Among adolescents age 12-19 years, ANA prevalence increased substantially, with odds ratios (ORs) of 2.02 (95% CI 1.16-3.53) and 2.88 (95% CI 1.64-5.04) in the second and third time periods relative to the first (P for trend < 0.0001). ANA prevalence increased in both sexes (especially in men), older adults (age ≥50 years), and non-Hispanic whites. These increases in ANA prevalence were not explained by concurrent trends in weight (obesity/overweight), smoking exposure, or alcohol consumption. CONCLUSION: The prevalence of ANA in the US has increased considerably in recent years. Additional studies to determine factors underlying these increases in ANA prevalence could elucidate causes of autoimmunity and enable the development of preventative measures.


Assuntos
Anticorpos Antinucleares/análise , Doenças Autoimunes/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Doenças Autoimunes/sangue , Biomarcadores/análise , Criança , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Razão de Chances , Prevalência , Estados Unidos/epidemiologia , Adulto Jovem
14.
Environ Health ; 19(1): 35, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178682

RESUMO

BACKGROUND: Endotoxin is ubiquitous in the environment, but its clustering with indoor allergens is not well characterized. This study examined the clustering patterns of endotoxin with allergens in house dust and their association with asthma outcomes. METHODS: We analyzed data from 6963 participants of the 2005-2006 National Health and Nutrition Examination Survey. House dust sampled from bedroom floor and bedding was evaluated for endotoxin and allergens from fungi, cockroach, dog, cat, mites, and rodents. Two-step cluster analysis and logistic regressions were performed to identify the clustering patterns and their associations with current asthma and wheeze in the past 12 months, adjusting for covariates. RESULTS: Of the homes, 17.8% had low endotoxin and allergen levels in house dust (Cluster 1). High endotoxin level clustered with Alternaria and pet allergens in the homes of participants with a high socioeconomic status who own pets (Cluster 2) (48.9%). High endotoxin clustered with Aspergillus, dust mites, cockroach, and rodent allergens in the homes of participants with low socioeconomic status (Cluster 3) (33.3%). Compared to Cluster 1, Cluster 2 was associated with higher asthma prevalence (OR 1.42, 95% CI: 1.06-1.91) and wheeze (OR 1.32, 95% CI: 1.07-1.63). Cluster 3 was positively associated with wheeze only in participants sensitized to inhalant allergens (OR 1.42, 95% CI: 1.06-1.91) or exposed to tobacco smoke (OR 1.72, 95% CI: 1.15-2.60). CONCLUSIONS: The clustering of endotoxin with allergens in dust from homes with pets or of people with low socioeconomic status is associated with asthma and wheeze.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Alérgenos/efeitos adversos , Asma/epidemiologia , Poeira/análise , Endotoxinas/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/etiologia , Criança , Pré-Escolar , Análise por Conglomerados , Exposição Ambiental/análise , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Prevalência , Estados Unidos/epidemiologia , Adulto Jovem
15.
Front Pharmacol ; 11: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116704

RESUMO

Previously, we showed vascular endothelial overexpression of human-CYP2J2 enhances coronary reactive hyperemia in Tie2-CYP2J2 Tr mice, and eNOS-/- mice had overexpression of CYP2J-epoxygenase with adenosine A2A receptor-induced enhance relaxation, but we did not see the response in CYP2J-epoxygenase knockout mice. Therefore, we hypothesized that Cyp2j5-gene deletion affects acetylcholine- and 5'-N-ethylcarboxamidoadenosine (NECA) (adenosine)-induced relaxation and their response is partially inhibited by angiotensin-II (Ang-II) in mice. Acetylcholine (Ach)-induced response was tested with N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH, CYP-epoxygenase inhibitor; 10-5M) and Ang-II (10-6M). In Cyp2j5-/- mice, ACh-induced relaxation was different from C57Bl/6 mice, at 10-5 M (76.1 ± 3.3 vs. 58.3 ± 5.2, P < 0.05). However, ACh-induced relaxation was not blocked by MS-PPOH in Cyp2j5-/- : 58.5 ± 5.0%, P > 0.05, but blocked in C57Bl/6: 52.3 ± 7.5%, P < 0.05, and Ang-II reduces ACh-induced relaxation in both Cyp2j5-/- and C57Bl/6 mice (38.8 ± 3.9% and 45.9 ± 7.8, P <0.05). In addition, NECA-induced response was tested with Ang-II. In Cyp2j5-/- mice, NECA-induced response was not different from C57Bl/6 mice at 10-5M (23.1 ± 2.1 vs. 21.1 ± 3.8, P > 0.05). However, NECA-induced response was reduced by Ang-II in both Cyp2j5-/- and C57Bl/6 mice (-10.8 ± 2.3% and 3.2 ± 2.7, P < 0.05). Data suggest that ACh-induced relaxation in Cyp2j5-/- mice depends on nitric oxide (NO) but not CYP-epoxygenases, and the NECA-induced different response in male vs. female Cyp2j5-/- mice when Ang-II treated.

16.
Epidemiology ; 31(3): 459-466, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028323

RESUMO

BACKGROUND: Various questionnaire-based definitions of chronic obstructive pulmonary disease (COPD) have been applied using the US representative National Health and Nutrition Examination Survey (NHANES), but few have been validated against objective lung function data. We validated two prior definitions that incorporated self-reported physician diagnosis, respiratory symptoms, and/or smoking. We also validated a new definition that we developed empirically using gradient boosting, an ensemble machine learning method. METHODS: Data came from 7,996 individuals 40-79 years who participated in NHANES 2007-2012 and underwent spirometry. We considered participants "true" COPD cases if their ratio of postbronchodilator forced expiratory volume in 1 second to forced vital capacity was below 0.7 or the lower limit of normal. We stratified all analyses by smoking history. We developed a gradient boosting model for smokers only; predictors assessed (25 total) included sociodemographics, inhalant exposures, clinical variables, and respiratory symptoms. RESULTS: The spirometry-based COPD prevalence was 26% for smokers and 8% for never smokers. Among smokers, using questionnaire-based definitions resulted in a COPD prevalence ranging from 11% to 16%, sensitivity ranging from 18% to 35%, and specificity ranging from 88% to 92%. The new definition classified participants based on age, bronchodilator use, body mass index (BMI), smoking pack-years, and occupational organic dust exposure, and resulted in the highest sensitivity (35%) and specificity (92%) among smokers. Among never smokers, the COPD prevalence ranged from 4% to 5%, and we attained good specificity (96%) at the expense of sensitivity (9-10%). CONCLUSION: Our results can be used to parametrize misclassification assumptions for quantitative bias analysis when pulmonary function data are unavailable.


Assuntos
Inquéritos Nutricionais , Doença Pulmonar Obstrutiva Crônica , Adulto , Idoso , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Reprodutibilidade dos Testes , Espirometria , Capacidade Vital
17.
Mol Cell Biochem ; 465(1-2): 37-51, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797255

RESUMO

Previously, we showed that adenosine A2A receptor induces relaxation independent of NO in soluble epoxide hydrolase-null mice (Nayeem et al. in Am J Physiol Regul Integr Comp Physiol 304:R23-R32, 2013). Currently, we hypothesize that Ephx2-gene deletion affects acetylcholine (Ach)-induced relaxation which is independent of A2AAR but dependent on NO and CYP-epoxygenases. Ephx2-/- aortas showed a lack of sEH (97.1%, P < 0.05) but an increase in microsomal epoxide hydrolase (mEH, 37%, P < 0.05) proteins compared to C57Bl/6 mice, and no change in CYP2C29 and CYP2J protein (P > 0.05). Ach-induced response was tested with nitro-L-arginine methyl ester (L-NAME) NO-inhibitor; 10-4 M), N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH) (CYP-epoxygenase inhibitor; 10-5 M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10-5 M), SCH-58261 (A2AAR-antagonist; 10-6 M), and angiotensin-II (Ang-II, 10-6 M). In Ephx2-/- mice, Ach-induced relaxation was not different from C57Bl/6 mice except at 10-5 M (92.75 ± 2.41 vs. 76.12 ± 3.34, P < 0.05). However, Ach-induced relaxation was inhibited with L-NAME (Ephx2-/-: 23.74 ± 3.76% and C57Bl/6: 11.61 ± 2.82%), MS-PPOH (Ephx2-/-: 48.16 ± 6.53% and C57Bl/6: 52.27 ± 7.47%), and 14,15-EEZE (Ephx2-/-: 44.29 ± 8.33% and C57Bl/6: 39.27 ± 7.47%) vs. non-treated (P < 0.05). But, it did not block with SCH-58261 (Ephx2-/-: 68.75 ± 11.41% and C57Bl/6: 66.26 ± 9.43%, P > 0.05) vs. non-treated (P > 0.05). Interestingly, Ang-II attenuates less relaxation in Ehx2-/- vs. C57Bl/6 mice (58.80 ± 7.81% vs. 45.92 ± 7.76, P < 0.05). Our data suggest that Ach-induced relaxation in Ephx2-/- mice depends on NO and CYP-epoxygenases but not on A2A AR, and Ephx2-gene deletion attenuates less Ach-induced relaxation in Ang-II-infused mice.


Assuntos
Acetilcolina/farmacocinética , Angiotensina II/farmacologia , Família 2 do Citocromo P450/metabolismo , Epóxido Hidrolases/deficiência , Deleção de Genes , Óxido Nítrico/metabolismo , Vasodilatação , Animais , Família 2 do Citocromo P450/genética , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
18.
Cardiovasc Res ; 116(12): 1972-1980, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31688905

RESUMO

AIMS: Cardiovascular side effects caused by non-steroidal anti-inflammatory drugs (NSAIDs), which all inhibit cyclooxygenase (COX)-2, have prevented development of new drugs that target prostaglandins to treat inflammation and cancer. Microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors have efficacy in the NSAID arena but their cardiovascular safety is not known. Our previous work identified asymmetric dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide synthase, as a potential biomarker of cardiovascular toxicity associated with blockade of COX-2. Here, we have used pharmacological tools and genetically modified mice to delineate mPGES-1 and COX-2 in the regulation of ADMA. METHODS AND RESULTS: Inhibition of COX-2 but not mPGES-1 deletion resulted in increased plasma ADMA levels. mPGES-1 deletion but not COX-2 inhibition resulted in increased plasma prostacyclin levels. These differences were explained by distinct compartmentalization of COX-2 and mPGES-1 in the kidney. Data from prostanoid synthase/receptor knockout mice showed that the COX-2/ADMA axis is controlled by prostacyclin receptors (IP and PPARß/δ) and the inhibitory PGE2 receptor EP4, but not other PGE2 receptors. CONCLUSION: These data demonstrate that inhibition of mPGES-1 spares the renal COX-2/ADMA pathway and define mechanistically how COX-2 regulates ADMA.


Assuntos
Aorta/enzimologia , Arginina/análogos & derivados , Ciclo-Oxigenase 2/metabolismo , Rim/enzimologia , Prostaglandina-E Sintases/metabolismo , Animais , Aorta/efeitos dos fármacos , Arginina/sangue , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Rim/efeitos dos fármacos , Masculino , Camundongos Knockout , PPAR beta/genética , PPAR beta/metabolismo , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/genética , Prostaglandinas I/sangue , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/metabolismo
19.
Adv Exp Med Biol ; 1161: 1-2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562616

RESUMO

In addition to this introduction, this book contains 18 outstanding chapters based on comprehensive and detailed reviews of timely topics presented at the 15th International Conference on Bioactive Lipids in Cancer, Inflammation and Related Diseases held in Puerto Vallarta, Mexico on October 22-25, 2017.


Assuntos
Inflamação , Lipídeos , Neoplasias , Congressos como Assunto , Humanos , Lipídeos/fisiologia , México , Neoplasias/fisiopatologia
20.
Cancer Res ; 79(8): 1822-1830, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803995

RESUMO

Colon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, emphasizing the need for the discovery of new cellular targets. Using a metabolomics approach, we report here that epoxygenated fatty acids (EpFA), which are eicosanoid metabolites produced by cytochrome P450 (CYP) monooxygenases, were increased in both the plasma and colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. CYP monooxygenases were overexpressed in colon tumor tissues and colon cancer cells. Pharmacologic inhibition or genetic ablation of CYP monooxygenases suppressed AOM/DSS-induced colon tumorigenesis in vivo. In addition, treatment with 12,13-epoxyoctadecenoic acid (EpOME), which is a metabolite of CYP monooxygenase produced from linoleic acid, increased cytokine production and JNK phosphorylation in vitro and exacerbated AOM/DSS-induced colon tumorigenesis in vivo. Together, these results demonstrate that the previously unappreciated CYP monooxygenase pathway is upregulated in colon cancer, contributes to its pathogenesis, and could be therapeutically explored for preventing or treating colon cancer. SIGNIFICANCE: This study finds that the previously unappreciated CYP monooxygenase eicosanoid pathway is deregulated in colon cancer and contributes to colon tumorigenesis.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Sistema Enzimático do Citocromo P-450/química , Eicosanoides/metabolismo , Inibidores Enzimáticos/farmacologia , Metabolômica , Animais , Antifúngicos/farmacologia , Apoptose , Azoximetano/toxicidade , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Proliferação de Células , Clotrimazol/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sistema Enzimático do Citocromo P-450/fisiologia , Sulfato de Dextrana/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proadifeno/farmacologia , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA