Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(11): 16392-16403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34651266

RESUMO

The production of extra virgin olive oil (EVOO) flavored with diverse spices, herbs, fruits, and vegetables or natural aromas is believed to provide advantageous properties considering either the high nutritional value or biological activity in addition to the flavoring and industrial aspects. The biological activities including antioxidant and antimicrobial properties of Tunisian EVOO obtained from "Chemlali" variety and mixed with chili pepper were investigated. Molecular analyses, including the detection of twelve olive-infecting viruses and Pseudomonas savastanoi pv savastanoi, were performed to ensure that the samples were obtained from healthy olive trees and EVOO quality was not affected. Quality parameters like free acidity, peroxide number, oxidative stability, and specific absorption at K232 nm and K270 nm were also investigated and no significant variation was revealed. The content of minor compounds such as chlorophylls, carotenoids, and total phenols showed minor changes. However, the profiles of the volatile compounds showed remarkable differences, which appeared to be the main factor for the observed variability in consumer acceptance. The results showed for the first time high quantities of polyphenols and ortho-diphenols. Four colorimetric methods were used for the determination of the antioxidant activity, namely DPPH, ABTS, FRAP, and ß-carotene test. Compared to the control, a higher level of antioxidant activity was observed for the flavored EVOO. Furthermore, significant results were obtained in the antimicrobial tests. The quality parameters of the mixture showed no alteration compared to the control. Finally, all the measurements and the chemical characterization gave a scientific basis for food technology innovation of new food products.


Assuntos
Capsicum , Olea , Aromatizantes , Valor Nutritivo , Azeite de Oliva
2.
Front Plant Sci ; 10: 694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191591

RESUMO

Sensitive detection of viruses in olive orchards is actually of main importance since these pathogenic agents cannot be treated, their dissemination is quite easy, and they can have eventual negative effects on olive oil quality. The work presented here describes the development and application of a new SYBR® Green-based real-time quantitative PCR (qPCR) analysis for specific and reliable quantification of highly spread olive tree viruses: Olive latent virus 1 (OLV-1), Tobacco necrosis virus D (TNV-D), Olive mild mosaic virus (OMMV), and Olive leaf yellowing-associated virus (OLYaV). qPCR methodology revealed high specificity and sensitivity, estimated in the range of 0.8-8 copies of the virus genome, for the studied viruses. For validation of the method, total RNA and double strand RNA (dsRNA) from naturally infected trees were used. In a first trial, dsRNAs from trees of cv. "Galega vulgar" from a Portuguese orchard, were subjected to qPCR and from the 30 samples tested, 26 were TNV-D and/or OMMV-positive and 25 were OLV-1 positive. In a second trial, total RNA from trees of different cultivars from Tunisian orchards, were here tested by qPCR and all viruses were detected. From the 33 samples studied, the most prevalent virus detected in Tunisia orchards was OLV-1 (31 samples diagnosed), followed by OLYaV (20 samples diagnosed), and finally the combination in last TNV-D and/or OMMV (12 samples diagnosed). In both trials, qPCR demonstrated to be effective and sensitive, even when using total RNA as template. qPCR through the use of a SYBR® Green methodology enabled, for the first time, a reliable, sensitive, and reproducible estimation of virus accumulation in infected olive trees, in which viruses are usually in low titres, that will allow gaining new insights in virus biology essential for disease control and give an important contribution for establishment of sanitary certification of olive propagative material.

3.
Food Chem ; 196: 58-65, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593465

RESUMO

The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples.


Assuntos
Agrobacterium/química , Bactérias/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Agrobacterium/genética , Bactérias/genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA