Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201591

RESUMO

A 59-year-old male with follicular lymphoma treated by anti-CD20-mediated B-cell depletion and ablative chemotherapy was hospitalized with a COVID-19 infection. Although the patient did not develop specific humoral immunity, he had a mild clinical course overall. The failure of all therapeutic options allowed infection to persist nearly 300 days with active accumulation of SARS-CoV-2 virus mutations. As a rescue therapy, an infusion of REGEN-COV (10933 and 10987) anti-spike monoclonal antibodies was performed 270 days from initial diagnosis. Due to partial clearance after the first dose (2.4 g), a consolidation dose (8 g) was infused six weeks later. Complete virus clearance could then be observed over the following month, after he was vaccinated with the Pfizer-BioNTech anti-COVID-19 vaccination. The successful management of this patient required prolonged enhanced quarantine, monitoring of virus mutations, pioneering clinical decisions based upon close consultation, and the coordination of multidisciplinary experts in virology, immunology, pharmacology, input from REGN, the FDA, the IRB, the health care team, the patient, and the patient's family. Current decisions to take revolve around patient's follicular lymphoma management, and monitoring for virus clearance persistence beyond disappearance of REGEN-COV monoclonal antibodies after anti-SARS-CoV-2 vaccination. Overall, specific guidelines for similar cases should be established.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/complicações , Humanos , Imunidade Humoral , Depleção Linfocítica , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/terapia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
2.
Cell Rep ; 35(6): 109091, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33961823

RESUMO

It is urgent and important to understand the relationship of the widespread severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) with host immune response and study the underlining molecular mechanism. N6-methylation of adenosine (m6A) in RNA regulates many physiological and disease processes. Here, we investigate m6A modification of the SARS-CoV-2 gene in regulating the host cell innate immune response. Our data show that the SARS-CoV-2 virus has m6A modifications that are enriched in the 3' end of the viral genome. We find that depletion of the host cell m6A methyltransferase METTL3 decreases m6A levels in SARS-CoV-2 and host genes, and m6A reduction in viral RNA increases RIG-I binding and subsequently enhances the downstream innate immune signaling pathway and inflammatory gene expression. METTL3 expression is reduced and inflammatory genes are induced in patients with severe coronavirus disease 2019 (COVID-19). These findings will aid in the understanding of COVID-19 pathogenesis and the design of future studies regulating innate immunity for COVID-19 treatment.


Assuntos
COVID-19/genética , Metiltransferases/metabolismo , SARS-CoV-2/genética , Adenosina/metabolismo , COVID-19/metabolismo , Linhagem Celular , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Humanos , Imunidade Inata/genética , Metilação , Metiltransferases/genética , RNA Viral/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/patogenicidade , Transdução de Sinais
3.
Infect Genet Evol ; 43: 135-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184192

RESUMO

Next-generation sequencing (NGS) technologies are becoming increasingly accessible, leading to an expanded interest in the composition of the porcine enteric virome. In the present study, the fecal virome of a non-diarrheic Belgian piglet was determined. Although the virome of only a single piglet was analyzed, some interesting data were obtained, including the second complete genome of a pig group C rotavirus (RVC). This Belgian strain was only distantly related to the only other completely characterized pig RVC strain, Cowden. Its relatedness to RVC strains from other host species was also analyzed and the porcine strain found in our study was only distantly related to RVCs detected in humans and cows. The gene encoding the outer capsid protein VP7 belonged to the rare porcine G3 genotype, which might be serologically distinct from most other pig RVC strains. A putative novel RVC VP6 genotype was identified as well. A group A rotavirus strain also present in this fecal sample contained the rare pig genotype combination G11P[27], but was only partially characterized. Typical pig RVA genotypes I5, A8, and T7 were found for the viral proteins VP6, NSP1, and NSP3, respectively. Interestingly, the fecal virome of the piglet also contained an astrovirus and an enterovirus, of which the complete genomes were characterized. Results of the current study indicate that many viruses may be present simultaneously in fecal samples of non-diarrheic piglets. In this study, these viruses could not be directly associated with any disease, but still they might have had a potential subclinical impact on pig growth performance. The fast evolution of NGS will be a powerful tool for future diagnostics in veterinary practice. Its application will certainly lead to better insights into the relevance of many (sub)clinical enteric viral infections, that may have remained unnoticed using traditional diagnostic techniques. This will stimulate the development of new and durable prophylactic measures to improve pig health and production.


Assuntos
Fezes/virologia , Infecções por Rotavirus/veterinária , Rotavirus/classificação , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Animais , Astroviridae/isolamento & purificação , Bélgica , Enterovirus/isolamento & purificação , Heterogeneidade Genética , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Rotavirus/genética , Análise de Sequência de RNA , Suínos
4.
Virol Rep ; 6: 74-80, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32289018

RESUMO

A number of PVs have been described in bats but to the best of our knowledge not from feces. Using a previously described NetoVIR protocol, Eidolon helvum pooled fecal samples (Eh) were treated and sequenced by Illumina next generation sequencing technology. Two complete genomes of novel PVs (EhPV2 and EhPV3) and 3 partial sequences (BATPV61, BATPV890a and BATPV890b) were obtained and analysis showed that the EhPV2 and EhPV3 major capsid proteins cluster with and share 60-64% nucleotide identity with that of Rousettus aegyptiacus PV1, thus representing new species of PVs within the genus Psipapillomavirus. The other PVs clustered in different branches of our phylogenetic tree and may potentially represent novel species and/or genera. This points to the vast diversity of PVs in bats and in Eidolon helvum bats in particular, therefore adding support to the current concept that PV evolution is more complex than merely strict PV-host co-evolution.

5.
BMJ ; 345: e4752, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875947

RESUMO

OBJECTIVE: To evaluate the effectiveness of rotavirus vaccination among young children in Belgium. DESIGN: Prospective case-control study. SETTING: Random sample of 39 Belgian hospitals, February 2008 to June 2010. PARTICIPANTS: 215 children admitted to hospital with rotavirus gastroenteritis confirmed by polymerase chain reaction and 276 age and hospital matched controls. All children were of an eligible age to have received rotavirus vaccination (that is, born after 1 October 2006 and aged ≥ 14 weeks). MAIN OUTCOME MEASURE: Vaccination status of children admitted to hospital with rotavirus gastroenteritis and matched controls. RESULTS: 99 children (48%) admitted with rotavirus gastroenteritis and 244 (91%) controls had received at least one dose of any rotavirus vaccine (P<0.001). The monovalent rotavirus vaccine accounted for 92% (n=594) of all rotavirus vaccine doses. With hospital admission as the outcome, the unadjusted effectiveness of two doses of the monovalent rotavirus vaccine was 90% (95% confidence interval 81% to 95%) overall, 91% (75% to 97%) in children aged 3-11 months, and 90% (76% to 96%) in those aged ≥ 12 months. The G2P[4] genotype accounted for 52% of cases confirmed by polymerase chain reaction with eligible matched controls. Vaccine effectiveness was 85% (64% to 94%) against G2P[4] and 95% (78% to 99%) against G1P[8]. In 25% of cases confirmed by polymerase chain reaction with eligible matched controls, there was reported co-infection with adenovirus, astrovirus and/or norovirus. Vaccine effectiveness against co-infected cases was 86% (52% to 96%). Effectiveness of at least one dose of any rotavirus vaccine (intention to vaccinate analysis) was 91% (82% to 95%). CONCLUSIONS: Rotavirus vaccination is effective for the prevention of admission to hospital for rotavirus gastroenteritis among young children in Belgium, despite the high prevalence of G2P[4] and viral co-infection.


Assuntos
Gastroenterite/prevenção & controle , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus , Idade de Início , Bélgica/epidemiologia , Estudos de Casos e Controles , Pré-Escolar , Efeitos Psicossociais da Doença , Feminino , Gastroenterite/epidemiologia , Gastroenterite/virologia , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Masculino , Estudos Prospectivos , Infecções por Rotavirus/epidemiologia , Resultado do Tratamento , Vacinação/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA