Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828908

RESUMO

During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Proteínas com Domínio T , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Botões de Extremidades/metabolismo , Botões de Extremidades/embriologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Regulação para Cima/genética , Padronização Corporal/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Mesoderma/embriologia
2.
Nat Commun ; 14(1): 3993, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414772

RESUMO

A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 12(1): 5685, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584102

RESUMO

Chromatin remodeling and genomic alterations impact spatio-temporal regulation of gene expression, which is central to embryonic development. The analysis of mouse and chicken limb development provides important insights into the morphoregulatory mechanisms, however little is known about the regulatory differences underlying their morphological divergence. Here, we identify the underlying shared and species-specific epigenomic and genomic variations. In mouse forelimb buds, we observe striking synchrony between the temporal dynamics of chromatin accessibility and gene expression, while their divergence in chicken wing buds uncovers species-specific regulatory heterochrony. In silico mapping of transcription factor binding sites and computational footprinting establishes the developmental time-restricted transcription factor-DNA interactions. Finally, the construction of target gene networks for HAND2 and GLI3 transcriptional regulators reveals both conserved and species-specific interactions. Our analysis reveals the impact of genome evolution on the regulatory interactions orchestrating vertebrate limb bud morphogenesis and provides a molecular framework for comparative Evo-Devo studies.


Assuntos
Padronização Corporal/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Galinhas , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Simulação por Computador , Embrião de Mamíferos , Redes Reguladoras de Genes , Camundongos , Proteínas do Tecido Nervoso/metabolismo , RNA-Seq , Especificidade da Espécie , Proteína Gli3 com Dedos de Zinco/metabolismo
4.
Elife ; 92020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33006313

RESUMO

Despite a common understanding that Gli TFs are utilized to convey a Hh morphogen gradient, genetic analyses suggest craniofacial development does not completely fit this paradigm. Using the mouse model (Mus musculus), we demonstrated that rather than being driven by a Hh threshold, robust Gli3 transcriptional activity during skeletal and glossal development required interaction with the basic helix-loop-helix TF Hand2. Not only did genetic and expression data support a co-factorial relationship, but genomic analysis revealed that Gli3 and Hand2 were enriched at regulatory elements for genes essential for mandibular patterning and development. Interestingly, motif analysis at sites co-occupied by Gli3 and Hand2 uncovered mandibular-specific, low-affinity, 'divergent' Gli-binding motifs (dGBMs). Functional validation revealed these dGBMs conveyed synergistic activation of Gli targets essential for mandibular patterning and development. In summary, this work elucidates a novel, sequence-dependent mechanism for Gli transcriptional activity within the craniofacial complex that is independent of a graded Hh signal.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desenvolvimento Maxilofacial , Camundongos/genética , Proteínas do Tecido Nervoso/genética , Crânio/crescimento & desenvolvimento , Proteína Gli3 com Dedos de Zinco/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Masculino , Desenvolvimento Maxilofacial/genética , Camundongos/metabolismo , Modelos Animais , Proteínas do Tecido Nervoso/metabolismo , Crânio/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo
5.
Stem Cell Reports ; 9(4): 1124-1138, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28919259

RESUMO

Bone-derived mesenchymal stromal cells (MSCs) differentiate into multiple lineages including chondro- and osteogenic fates and function in establishing the hematopoietic compartment of the bone marrow. Here, we analyze the emergence of different MSC types during mouse limb and long bone development. In particular, PDGFRαposSCA-1pos (PαS) cells and mouse skeletal stem cells (mSSCs) are detected within the PDGFRαposCD51pos (PαCD51) mesenchymal progenitors, which are the most abundant progenitors in early limb buds and developing long bones until birth. Long-bone-derived PαS cells and mSSCs are most prevalent in newborn mice, and molecular analysis shows that they constitute distinct progenitor populations from the earliest stages onward. Differential expression of CD90 and CD73 identifies four PαS subpopulations that display distinct chondro- and osteogenic differentiation potentials. Finally, we show that cartilage constructs generated from CD90pos PαS cells are remodeled into bone organoids encompassing functional endothelial and hematopoietic compartments, which makes these cells suited for bone tissue engineering.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Antígenos CD/metabolismo , Biomarcadores , Linhagem da Célula , Condrogênese , Hematopoese , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Fisiológica , Fenótipo
6.
PLoS One ; 10(4): e0124870, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25901736

RESUMO

BACKGROUND: Medulloblastomas are malignant childhood brain tumors that arise due to the aberrant activity of developmental pathways during postnatal cerebellar development and in adult humans. Transcriptome analysis has identified four major medulloblastoma subgroups. One of them, the Sonic hedgehog (SHH) subgroup, is caused by aberrant Hedgehog signal transduction due to mutations in the Patched1 (PTCH1) receptor or downstream effectors. Mice carrying a Patched-1 null allele (Ptch1∆/+) are a good model to study the alterations underlying medulloblastoma development as a consequence of aberrant Hedgehog pathway activity. RESULTS: Transcriptome analysis of human medulloblastomas shows that SERPINE2, also called Protease Nexin-1 (PN-1) is overexpressed in most medulloblastomas, in particular in the SHH and WNT subgroups. As siRNA-mediated lowering of SERPINE2/PN-1 in human medulloblastoma DAOY cells reduces cell proliferation, we analyzed its potential involvement in medulloblastoma development using the Ptch1∆/+ mouse model. In Ptch1∆/+ mice, medulloblastomas arise as a consequence of aberrant Hedgehog pathway activity. Genetic reduction of Serpine2/Pn-1 interferes with medulloblastoma development in Ptch1∆/+ mice, as ~60% of the pre-neoplastic lesions (PNLs) fail to develop into medulloblastomas and remain as small cerebellar nodules. In particular the transcription factor Atoh1, whose expression is essential for development of SHH subgroup medulloblastomas is lost. Comparative molecular analysis reveals the distinct nature of the PNLs in young Ptch1∆/+Pn-1Δ/+ mice. The remaining wild-type Ptch1 allele escapes transcriptional silencing in most cases and the aberrant Hedgehog pathway activity is normalized. Furthermore, cell proliferation and the expression of the cell-cycle regulators Mycn and Cdk6 are significantly reduced in PNLs of Ptch1∆/+Pn-1Δ/+ mice. CONCLUSIONS: Our analysis provides genetic evidence that aberrant Serpine2/Pn-1 is required for proliferation of human and mouse medulloblastoma cells. In summary, our analysis shows that Serpine2/PN-1 boosts malignant progression of PNLs to medulloblastomas, in which the Hedgehog pathway is activated in a SHH ligand-independent manner.


Assuntos
Progressão da Doença , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Serpina E2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cerebelo/patologia , Modelos Animais de Doenças , Inativação Gênica , Genótipo , Proteínas Hedgehog/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
7.
Cell Rep ; 9(6): 2071-83, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497097

RESUMO

The basic-helix-loop-helix (bHLH) transcription factor Hand2 plays critical roles during cardiac morphogenesis via expression and function within myocardial, neural crest, and epicardial cell populations. Here, we show that Hand2 plays two essential Notch-dependent roles within the endocardium. Endocardial ablation of Hand2 results in failure to develop a patent tricuspid valve, intraventricular septum defects, and hypotrabeculated ventricles, which collectively resemble the human congenital defect tricuspid atresia. We show endocardial Hand2 to be an integral downstream component of a Notch endocardium-to-myocardium signaling pathway and a direct transcriptional regulator of Neuregulin1. Additionally, Hand2 participates in endocardium-to-endocardium-based cell signaling, with Hand2 mutant hearts displaying an increased density of coronary lumens. Molecular analyses further reveal dysregulation of several crucial components of Vegf signaling, including VegfA, VegfR2, Nrp1, and VegfR3. Thus, Hand2 functions as a crucial downstream transcriptional effector of endocardial Notch signaling during both cardiogenesis and coronary vasculogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endocárdio/embriologia , Camundongos , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Notch/genética , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Differentiation ; 85(4-5): 121-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23792766

RESUMO

Endochondral bone development is orchestrated by the spatially and temporally coordinated differentiation of chondrocytes along the longitudinal axis of the cartilage anlage. Initially, the slowly proliferating, periarticular chondrocytes give rise to the pool of rapidly dividing columnar chondrocytes, whose expansion determines the length of the long bones. The Indian hedgehog (IHH) ligand regulates both the proliferation of columnar chondrocytes and their differentiation into post-mitotic hypertrophic chondrocytes in concert with GLI3, one of the main transcriptional effectors of HH signal transduction. In the absence of Hh signalling, the expression of Vlk (vertebrate lonesome kinase, also called Pkdcc) is increased. We now show that the shortening of limb long bones in Vlk-deficient mouse embryos is aggravated by additional inactivation of Gli3. Our analysis establishes that Vlk and Gli3 synergize to control the temporal kinetics of chondrocyte differentiation during long bone development. Whereas differentiation of limb mesenchymal progenitors into chondrocytes and the initial formation of the cartilage anlagen of the limb skeleton are not altered, Vlk and Gli3 are required for the temporally coordinated differentiation of periarticular into columnar and ultimately hypertrophic chondrocytes in long bones. In limbs lacking both Vlk and Gli3, the appearance of columnar and hypertrophic chondrocytes is severely delayed and zones of morphologically distinct chondrocytes are not established until E16.5. At the molecular level, these morphological alterations are reflected by delayed activation and lowered expression of Ihh, Pth1r and Col10a1 in long bone rudiments of double mutant limbs. In summary, our genetic analysis establishes that VLK plays a role in the IHH/GLI3 interactions and that Vlk and Gli3 cooperate to regulate long bone development by modulating the temporal kinetics of establishing columnar and hypertrophic chondrocyte domains.


Assuntos
Desenvolvimento Ósseo/genética , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Proteínas Quinases/genética , Animais , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Osso e Ossos/embriologia , Cartilagem/metabolismo , Proliferação de Células , Condrócitos/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteínas Tirosina Quinases , Transdução de Sinais/fisiologia , Proteína Gli3 com Dedos de Zinco
9.
BMC Dev Biol ; 12: 23, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22888807

RESUMO

BACKGROUND: Mouse limb bud is a prime model to study the regulatory interactions that control vertebrate organogenesis. Major aspects of limb bud development are controlled by feedback loops that define a self-regulatory signalling system. The SHH/GREM1/AER-FGF feedback loop forms the core of this signalling system that operates between the posterior mesenchymal organiser and the ectodermal signalling centre. The BMP antagonist Gremlin1 (GREM1) is a critical node in this system, whose dynamic expression is controlled by BMP, SHH, and FGF signalling and key to normal progression of limb bud development. Previous analysis identified a distant cis-regulatory landscape within the neighbouring Formin1 (Fmn1) locus that is required for Grem1 expression, reminiscent of the genomic landscapes controlling HoxD and Shh expression in limb buds. RESULTS: Three highly conserved regions (HMCO1-3) were identified within the previously defined critical genomic region and tested for their ability to regulate Grem1 expression in mouse limb buds. Using a combination of BAC and conventional transgenic approaches, a 9 kb region located ~70 kb downstream of the Grem1 transcription unit was identified. This region, termed Grem1 Regulatory Sequence 1 (GRS1), is able to recapitulate major aspects of Grem1 expression, as it drives expression of a LacZ reporter into the posterior and, to a lesser extent, in the distal-anterior mesenchyme. Crossing the GRS1 transgene into embryos with alterations in the SHH and BMP pathways established that GRS1 depends on SHH and is modulated by BMP signalling, i.e. integrates inputs from these pathways. Chromatin immunoprecipitation revealed interaction of endogenous GLI3 proteins with the core cis-regulatory elements in the GRS1 region. As GLI3 is a mediator of SHH signal transduction, these results indicated that SHH directly controls Grem1 expression through the GRS1 region. Finally, all cis-regulatory regions within the Grem1 genomic landscape locate to the DNAse I hypersensitive sites identified in this genomic region by the ENCODE consortium. CONCLUSIONS: This study establishes that distant cis-regulatory regions scattered through a larger genomic landscape control the highly dynamic expression of Grem1, which is key to normal progression of mouse limb bud development.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas/genética , Proteínas Hedgehog/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades/embriologia , Sequências Reguladoras de Ácido Nucleico , Animais , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Sequência Conservada/genética , Citocinas , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Fatores de Transcrição Kruppel-Like/metabolismo , Botões de Extremidades/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Proteína Gli3 com Dedos de Zinco
10.
Dev Cell ; 22(4): 837-48, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22465667

RESUMO

Inactivation of Gli3, a key component of Hedgehog signaling in vertebrates, results in formation of additional digits (polydactyly) during limb bud development. The analysis of mouse embryos constitutively lacking Gli3 has revealed the essential GLI3 functions in specifying the anteroposterior (AP) limb axis and digit identities. We conditionally inactivated Gli3 during mouse hand plate development, which uncoupled the resulting preaxial polydactyly from known GLI3 functions in establishing AP and digit identities. Our analysis revealed that GLI3 directly restricts the expression of regulators of the G(1)-S cell-cycle transition such as Cdk6 and constrains S phase entry of digit progenitors in the anterior hand plate. Furthermore, GLI3 promotes the exit of proliferating progenitors toward BMP-dependent chondrogenic differentiation by spatiotemporally restricting and terminating the expression of the BMP antagonist Gremlin1. Thus, Gli3 is a negative regulator of the proliferative expansion of digit progenitors and acts as a gatekeeper for the exit to chondrogenic differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Condrogênese/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Botões de Extremidades/citologia , Proteínas do Tecido Nervoso/fisiologia , Polidactilia/patologia , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Western Blotting , Padronização Corporal , Proteínas Morfogenéticas Ósseas/genética , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Deformidades da Mão/etiologia , Botões de Extremidades/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Fase S/fisiologia , Células-Tronco/metabolismo , Proteína Gli3 com Dedos de Zinco
11.
PLoS One ; 6(4): e19370, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552539

RESUMO

BACKGROUND: Genetic analysis in the mouse revealed that GREMLIN1 (GREM1)-mediated antagonism of BMP4 is essential for ureteric epithelial branching as the disruption of ureteric bud outgrowth and renal agenesis in Grem1-deficient embryos is restored by additional inactivation of one Bmp4 allele. Another BMP ligand, BMP7, was shown to control the proliferative expansion of nephrogenic progenitors and its requirement for nephrogenesis can be genetically substituted by Bmp4. Therefore, we investigated whether BMP7 in turn also participates in inhibiting ureteric bud outgrowth during the initiation of metanephric kidney development. METHODOLOGY/PRINCIPAL FINDINGS: Genetic inactivation of one Bmp7 allele in Grem1-deficient mouse embryos does not alleviate the bilateral renal agenesis, while complete inactivation of Bmp7 restores ureteric bud outgrowth and branching. In mouse embryos lacking both Grem1 and Bmp7, GDNF/WNT11 feedback signaling and the expression of the Etv4 target gene, which regulates formation of the invading ureteric bud tip, are restored. In contrast to the restoration of ureteric bud outgrowth and branching, nephrogenesis remains aberrant as revealed by the premature loss of Six2 expressing nephrogenic progenitor cells. Therefore, very few nephrons develop in kidneys lacking both Grem1 and Bmp7 and the resulting dysplastic phenotype is indistinguishable from the one of Bmp7-deficient mouse embryos. CONCLUSIONS/SIGNIFICANCE: Our study reveals an unexpected inhibitory role of BMP7 during the onset of ureteric bud outgrowth. As BMP4, BMP7 and GREM1 are expressed in distinct mesenchymal and epithelial domains, the localized antagonistic interactions of GREM1 with BMPs could restrict and guide ureteric bud outgrowth and branching. The robustness and likely significant redundancy of the underlying signaling system is evidenced by the fact that global reduction of Bmp4 or inactivation of Bmp7 are both able to restore ureteric bud outgrowth and epithelial branching in Grem1-deficient mouse embryos.


Assuntos
Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Embrião de Mamíferos/metabolismo , Ductos Mesonéfricos/metabolismo , Animais , Apoptose , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Embrião de Mamíferos/citologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/citologia , Rim/embriologia , Masculino , Camundongos , Gravidez
12.
Dev Biol ; 348(1): 97-106, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20883686

RESUMO

Loss- and gain-of function approaches modulating canonical Wnt/ß-catenin activity have established a role for the Wnt/ß-catenin pathway during tooth development. Here we show that Wnt/ß-catenin signaling is required in the dental mesenchyme for normal incisor development, as locally restricted genetic inactivation of ß-catenin results in a splitting of the incisor placode, giving rise to two incisors. Molecularly this is first associated with down-regulation of Bmp4 and subsequent splitting of the Shh domain at a subsequent stage. The latter phenotype can be mimicked by ectopic application of the BMP antagonist Noggin. Conditional genetic inactivation of Bmp4 in the mesenchyme reveals that mesenchymal BMP4 activity is required for maintenance of Shh expression in the dental ectoderm. Taken together our results indicate that ß-catenin together with Lef1 and Tcf1 are required to activate Bmp4 expression in order to maintain Shh expression in the dental ectoderm. This provides a mechanism whereby the number of incisors arising from one placode can be varied through local alterations of a mesenchymal signaling circuit involving ß-catenin, Lef1, Tcf1 and Bmp4.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Incisivo/crescimento & desenvolvimento , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Mesoderma/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/genética , Proteínas de Transporte/farmacologia , Implantes de Medicamento , Células Epiteliais/metabolismo , Genes Reporter , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Incisivo/embriologia , Mandíbula , Camundongos , Camundongos Transgênicos , Fenótipo , Estrutura Terciária de Proteína , Transplante Heterotópico , beta Catenina/deficiência , beta Catenina/genética
13.
Proc Natl Acad Sci U S A ; 107(16): 7251-6, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20406908

RESUMO

Mesenchymal stem/stromal cells (MSC) are typically used to generate bone tissue by a process resembling intramembranous ossification, i.e., by direct osteoblastic differentiation. However, most bones develop by endochondral ossification, i.e., via remodeling of hypertrophic cartilaginous templates. To date, endochondral bone formation has not been reproduced using human, clinically compliant cell sources. Here, we aimed at engineering tissues from bone marrow-derived, adult human MSC with an intrinsic capacity to undergo endochondral ossification. By analogy to embryonic limb development, we hypothesized that successful execution of the endochondral program depends on the initial formation of hypertrophic cartilaginous templates. Human MSC, subcutaneously implanted into nude mice at various stages of chondrogenic differentiation, formed bone trabeculae only when they had developed in vitro hypertrophic tissue structures. Advanced maturation in vitro resulted in accelerated formation of larger bony tissues. The underlying morphogenetic process was structurally and molecularly similar to the temporal and spatial progression of limb bone development in embryos. In particular, Indian hedgehog signaling was activated at early stages and required for the in vitro formation of hypertrophic cartilage. Subsequent development of a bony collar in vivo was followed by vascularization, osteoclastic resorption of the cartilage template, and appearance of hematopoietic foci. This study reveals the capacity of human MSC to generate bone tissue via an endochondral program and provides a valid model to study mechanisms governing bone development. Most importantly, this process could generate advanced grafts for bone regeneration by invoking a "developmental engineering" paradigm.


Assuntos
Desenvolvimento Ósseo , Regeneração Óssea , Osso e Ossos/patologia , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Transplante de Células/métodos , Condrócitos/citologia , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Medicina Regenerativa , Transdução de Sinais , Engenharia Tecidual/métodos
14.
CSH Protoc ; 2008: pdb.prot4986, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21356829

RESUMO

INTRODUCTIONHematoxylin and eosin (H&E) stains have been used for at least a century and are still essential for recognizing various tissue types and the morphologic changes that form the basis of contemporary cancer diagnosis. The stain has been unchanged for many years because it works well with a variety of fixatives and displays a broad range of cytoplasmic, nuclear, and extracellular matrix features. Hematoxylin has a deep blue-purple color and stains nucleic acids by a complex, incompletely understood reaction. Eosin is pink and stains proteins nonspecifically. In a typical tissue, nuclei are stained blue, whereas the cytoplasm and extracellular matrix have varying degrees of pink staining. Well-fixed cells show considerable intranuclear detail. Nuclei show varying cell-type- and cancer-type-specific patterns of condensation of heterochromatin (hematoxylin staining) that are diagnostically very important. Nucleoli stain with eosin. If abundant polyribosomes are present, the cytoplasm will have a distinct blue cast. The Golgi zone can be tentatively identified by the absence of staining in a region next to the nucleus. Thus, the stain discloses abundant structural information, with specific functional implications. A limitation of hematoxylin staining is that it is incompatible with immunofluorescence. It is useful, however, to stain one serial paraffin section from a tissue in which immunofluorescence will be performed. Hematoxylin, generally without eosin, is useful as a counterstain for many immunohistochemical or hybridization procedures that use colorimetric substrates (such as alkaline phosphatase or peroxidase). This protocol describes H&E staining of tissue and cell sections.

15.
Dev Growth Differ ; 49(6): 543-53, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17661744

RESUMO

The zinc-finger transcription factor GLI3 acts during vertebrate development in a combinatorial, context-dependent fashion as a primary transducer of sonic hedgehog (SHH) signaling. In humans, mutations affecting this key regulator of development are associated with GLI3-morphopathies, a group of congenital malformations in which forebrain and limb development are preferentially affected. We show that a non-coding element from intron two of GLI3, ultraconserved in mammals and highly conserved in the pufferfish Fugu, is a transcriptional enhancer. In transient transfection assays, it activates reporter gene transcription in human cell cultures expressing endogenous GLI3 but not in GLI3 negative cells. The identified enhancer element is predicted to contain conserved binding sites for transcription factors crucial for developmental steps in which GLI3 is involved. The regulatory potential of this element is conserved and was used to direct tissue-specific expression of a green fluorescent protein reporter gene in zebrafish embryos and of a beta-galactosidase reporter in transgenic mouse embryos. Time, location, and quantity of reporter gene expression are congruent with part of the pattern previously reported for endogenous GLI3 transcription.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Ratos , Takifugu/genética , Peixe-Zebra/genética , Proteína Gli3 com Dedos de Zinco
16.
Development ; 134(13): 2397-405, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17522159

RESUMO

Antagonists act to restrict and negatively modulate the activity of secreted signals during progression of embryogenesis. In mouse embryos lacking the extra-cellular BMP antagonist gremlin 1 (Grem1), metanephric development is disrupted at the stage of initiating ureteric bud outgrowth. Treatment of mutant kidney rudiments in culture with recombinant gremlin 1 protein induces additional epithelial buds and restores outgrowth and branching. All epithelial buds express Wnt11, and Gdnf is significantly upregulated in the surrounding mesenchyme, indicating that epithelial-mesenchymal (e-m) feedback signalling is restored. In the wild type, Bmp4 is expressed by the mesenchyme enveloping the Wolffian duct and ureteric bud and Grem1 is upregulated in the mesenchyme around the nascent ureteric bud prior to initiation of its outgrowth. In agreement, BMP activity is reduced locally as revealed by lower levels of nuclear pSMAD protein in the mesenchyme. By contrast, in Grem1-deficient kidney rudiments, pSMAD proteins are detected in many cell nuclei in the metanephric mesenchyme, indicative of excessive BMP signal transduction. Indeed, genetic lowering of BMP4 levels in Grem1-deficient mouse embryos completely restores ureteric bud outgrowth and branching morphogenesis. The reduction of BMP4 levels in Grem1 mutant embryos enables normal progression of renal development and restores adult kidney morphology and functions. This study establishes that initiation of metanephric kidney development requires the reduction of BMP4 activity by the antagonist gremlin 1 in the mesenchyme, which in turn enables ureteric bud outgrowth and establishment of autoregulatory GDNF/WNT11 feedback signalling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rim/embriologia , Rim/metabolismo , Ureter/metabolismo , Proteínas Wnt/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/genética , Núcleo Celular/metabolismo , Forma Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Morfogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Ureter/efeitos dos fármacos , Ureter/embriologia
17.
Development ; 134(9): 1745-54, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17409116

RESUMO

Development of the postnatal cerebellum relies on the tight regulation of cell number by morphogens that control the balance between cell proliferation, survival and differentiation. Here, we analyze the role of the serine-protease inhibitor protease nexin 1 (PN-1; SERPINE2) in the proliferation and differentiation of cerebellar granular neuron precursors (CGNPs) via the modulation of their main mitogenic factor, sonic hedgehog (SHH). Our studies show that PN-1 interacts with low-density lipoprotein receptor-related proteins (LRPs) to antagonize SHH-induced CGNP proliferation and that it inhibits the activity of the SHH transcriptional target GLI1. The binding of PN-1 to LRPs interferes with SHH-induced cyclin D1 expression. CGNPs isolated from Pn-1-deficient mice exhibit enhanced basal proliferation rates due to overactivation of the SHH pathway and show higher sensitivity to exogenous SHH. In vivo, the Pn-1 deficiency alters the expression of SHH target genes. In addition, the onset of CGNP differentiation is delayed, which results in an enlarged outer external granular layer. Furthermore, the Pn-1 deficiency leads to an overproduction of CGNPs and to enlargement of the internal granular layer in a subset of cerebellar lobes during late development and adulthood. We propose that PN-1 contributes to shaping the cerebellum by promoting cell cycle exit.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Cerebelo/metabolismo , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nexinas de Proteases , Receptores de Superfície Celular/genética , Transdução de Sinais
18.
Int J Dev Biol ; 49(4): 443-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15968591

RESUMO

The Gli3 and Alx4 transcriptional regulators are expressed in the anterior limb bud mesenchyme and their disruption in mice results in preaxial polydactyly. While the polydactylous phenotype of Alx4 deficient limb buds depends on SHH, the one of Gli3 deficient limb buds is completely independent of SHH signalling, suggesting that these genes act in parallel pathways. Analysis of limb buds lacking both Gli3 and Alx4 now shows that these two genes interact during limb skeletal morphogenesis. In addition to the defects in single mutants, the stylopod is severely malformed and the anterior element of the zeugopod is lost in double mutant limbs. However, limb bud patterning in Gli3-/-; Alx4-/- double mutant embryos is not affected more than in single mutants as the expression domains of key regulators remain the same. Most interestingly, the loss of the severe preaxial polydactyly characteristic of Gli3-/- limbs in double mutant embryos establishes that this type of polydactyly requires Alx4 function.


Assuntos
Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Botões de Extremidades/embriologia , Proteínas do Tecido Nervoso/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Polidactilia/embriologia , Polidactilia/genética , Proteína Gli3 com Dedos de Zinco
19.
Liver Int ; 24(2): 161-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15078481

RESUMO

BACKGROUND/AIMS: The angiogenic properties, its role in mesoderm differentiation and cell culture studies implicate an important role of fibroblast growth factor (FGF-2) in liver regeneration. The aim of the study was to evaluate this role in a FGF-2 knockout mouse model. METHODS: Liver regeneration after left hemihepatectomy (partial hepatectomy, PH) was evaluated in homozygous FGF-2 deficient (-/-) mice (male C57BL/6J) and their FGF-2 competent (+/+) littermates (controls) (day 0-10). RESULTS: FGF-2-(-/-) mice displayed normal dynamics in liver regeneration. FGF-2 protein was overexpressed 4 days post PH in controls. BrdU incorporation showed a biphasic pattern in FGF-2-(-/-) mice, whereas it decreased continuously after one peak (day 2) in controls. In FGF-2-(-/-) livers hepatic growth factor mRNA post PH was 1 day longer decreased and markedly less elevated thereafter compared with control. Vascular endothelial growth factor (VEGF) mRNA levels were clearly increased in FGF-2-(-/-) mice pre- and postoperatively in contrast to controls. VEGF protein levels in livers of FGF-2-(-/-) mice were elevated preoperatively, but similar in both groups after PH. With SU5416, a VEGF-receptor inhibitor, liver regeneration in FGF-2-(-/-) mice was reduced significantly, whereas it remained unchanged in controls. CONCLUSIONS: Liver regeneration dynamics in FGF-2-(-/-) mice were comparable with controls, potentially due to a functional substitution of FGF-2 by VEGF.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regeneração Hepática/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Hepatectomia , Homozigoto , Indóis/administração & dosagem , Indóis/farmacologia , Injeções Intraperitoneais , Regeneração Hepática/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Pirróis/administração & dosagem , Pirróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
20.
Mol Cell Biol ; 23(17): 6037-48, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12917328

RESUMO

Development and regeneration of muscle tissue is a highly organized, multistep process that requires cell proliferation, migration, differentiation, and maturation. Previous data implicate fibroblast growth factors (FGFs) as critical regulators of these processes, although their precise role in vivo is still not clear. We have explored the consequences of the loss of multiple FGFs (FGF2 and FGF6 in particular) for muscle regeneration in mdx mice, which serve as a model for chronic muscle damage. We show that the combined loss of FGF2 and FGF6 leads to severe dystrophic changes in the musculature. We found that FGF6 mutant myoblasts had decreased migration ability in vivo, whereas wild-type myoblasts migrated normally in a FGF6 mutant environment after transplantation of genetically labeled myoblasts from FGF6 mutants in wild-type mice and vice versa. In addition, retrovirus-mediated expression of dominant-negative versions of Ras and Ral led to a reduced migration of transplanted myoblasts in vivo. We propose that FGFs are critical components of the muscle regeneration machinery that enhance skeletal muscle regeneration, probably by stimulation of muscle stem cell migration.


Assuntos
Movimento Celular/genética , Fator 2 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Distrofias Musculares/patologia , Mioblastos Esqueléticos/patologia , Proteínas Proto-Oncogênicas/genética , Animais , Transplante de Células , Células Cultivadas , Distrofina/genética , Fator 2 de Crescimento de Fibroblastos/deficiência , Fator 6 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Mutantes , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Mioblastos Esqueléticos/fisiologia , Mioblastos Esqueléticos/transplante , Proteínas Proto-Oncogênicas/deficiência , Regeneração/genética , Retroviridae/genética , Transdução de Sinais , Fator ral de Troca do Nucleotídeo Guanina/genética , Fator ral de Troca do Nucleotídeo Guanina/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA