Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39436192

RESUMO

One of the most dangerous aspects of cancers is their ability to metastasize, which is the leading cause of death. Hence, it holds significance to develop therapies targeting the eradication of cancer cells in parallel, inhibiting metastases in cells surviving the applied therapy. Here, we focused on two melanoma cell lines─WM35 and WM266-4─representing the less and more invasive melanomas. We investigated the mechanisms of cellular processes regulating the activation of actomyosin as an effect of colchicine treatment. Additionally, we investigated the biophysical aspects of supplement therapy using Rho-associated protein kinase (ROCK) inhibitor (Y-27632) and myosin II inhibitor ((-)-blebbistatin), focusing on the microtubules and actin filaments. We analyzed their effect on the proliferation, migration, and invasiveness of melanoma cells, supported by studies on cytoskeletal architecture using confocal fluorescence microscopy and nanomechanics using atomic force microscopy (AFM) and microconstriction channels. Our results showed that colchicine inhibits the migration of most melanoma cells, while for a small cell population, it paradoxically increases their migration and invasiveness. These changes are also accompanied by the formation of stress fibers, compensating for the loss of microtubules. Simultaneous administration of selected agents led to the inhibition of this compensatory effect. Collectively, our results highlighted that colchicine led to actomyosin activation and increased the level of cancer cell invasiveness. We emphasized that a cellular pathway of Rho-ROCK-dependent actomyosin contraction is responsible for the increased invasive potential of melanoma cells in tubulin-targeted therapy.

2.
Biosens Bioelectron ; 258: 116337, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703495

RESUMO

Recruiting circulating cells based on interactions between surface receptors and corresponding ligands holds promise for capturing cells with specific adhesive properties. Our study investigates the adhesion of skin cells to specific lectins, particularly focusing on advancements in lectin-based biosensors with diagnostic potential. We explore whether we can successfully capture normal skin (melanocytes and keratinocytes) and melanoma (WM35, WM115, WM266-4) cells in a low-shear flow environment by coating surfaces with lectins. Specifically, we coated surfaces with Dolichos biflorus (DBA) and Maackia Amurensis (MAL) lectins, which were used to detect and capture specific skin cells from the flow of cell mixture. Alterations in glycan expression (confirmed by fluorescent microscopy) demonstrated that DBA binds predominantly to normal skin cells, while MAL interacts strongly with melanoma cells. Assessing adhesion under static and dynamic low-shear stress conditions (up to 30 mPa) underscores the reliability of DBA and MAL as markers for discriminating specific cell type. Melanocytes and keratinocytes adhere to DBA-coated surfaces, while melanoma cells prefer MAL-coated surfaces. A comprehensive analysis encompassing cell shape, cytoskeleton, and focal adhesions shows the independence of our approach from the inherent characteristics of cells, thus demonstrating its robustness. Our results carry practical implications for lectin-biosensor designs, emphasizing the significance of glycan-based discrimination of pathologically altered cells. Combined with microfluidics, it demonstrates the value of cell adhesion as a discriminant of cancer-related changes, with potential applications spanning diagnostics, therapeutic interventions, and advanced biomedical technologies.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Neoplasias Cutâneas , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Glicosilação , Neoplasias Cutâneas/patologia , Melanoma/patologia , Melanoma/diagnóstico , Queratinócitos/citologia , Pele/patologia , Pele/química , Lectinas/química , Lectinas/metabolismo , Linhagem Celular Tumoral , Melanócitos/citologia , Melanócitos/metabolismo , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/instrumentação
3.
Artigo em Inglês | MEDLINE | ID: mdl-37889219

RESUMO

The present study investigates silicone transfer occurring during microcontact printing (µCP) of lectins with polydimethylsiloxane (PDMS) stamps and its impact on the adhesion of cells. Static adhesion assays and single-cell force spectroscopy (SCFS) are used to compare adhesion of nonmalignant (HCV29) and cancer (HT1376) bladder cells, respectively, to high-affinity lectin layers (PHA-L and WGA, respectively) prepared by physical adsorption and µCP. The chemical composition of the µCP lectin patterns was monitored by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the amount of transferred silicone in the µCP process depends on the preprocessing of the PDMS stamps. It is revealed that silicone contamination within the patterned lectin layers inhibits the adhesion of bladder cells, and the work of adhesion is lower for µCP lectins than for drop-cast lectins. The binding capacity of microcontact printed lectins was larger when the PDMS stamps were treated with UV ozone plasma as compared to sonication in ethanol and deionized water. ToF-SIMS data show that ozone-based treatment of PDMS stamps used for µCP of lectin reduces the silicone contamination in the imprinting protocol regardless of stamp geometry (flat vs microstructured). The role of other possible contributors, such as the lectin conformation and organization of lectin layers, is also discussed.

4.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175920

RESUMO

Aberrant expression of glycans, i.e., oligosaccharide moiety covalently attached to proteins or lipids, is characteristic of various cancers, including urothelial ones. The binding of lectins to glycans is classified as molecular recognition, which makes lectins a strong tool for understanding their role in developing diseases. Here, we present a quantitative approach to tracing glycan-lectin interactions in cells, from the initial to the steady phase of adhesion. The cell adhesion was measured between urothelial cell lines (non-malignant HCV29 and carcinoma HT1376 and T24 cells) and lectin-coated surfaces. Depending on the timescale, single-cell force spectroscopy, and adhesion assays conducted in static and flow conditions were applied. The obtained results reveal that the adhesion of urothelial cells to two specific lectins, i.e., phytohemagglutinin-L and wheat germ agglutinin, was specific and selective. Thus, these lectins can be applied to selectively capture, identify, and differentiate between cancer types in a label-free manner. These results open up the possibility of designing lectin-based biosensors for diagnostic or prognostic purposes and developing strategies for drug delivery that could target cancer-associated glycans.


Assuntos
Lectinas , Neoplasias da Bexiga Urinária , Humanos , Lectinas/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Fito-Hemaglutininas/farmacologia , Aglutininas do Germe de Trigo , Polissacarídeos/metabolismo
5.
Sci Rep ; 12(1): 16276, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175469

RESUMO

Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Fatores de Despolimerização de Actina , Glucose , Humanos , Oxigênio
6.
J Cell Mol Med ; 26(14): 3913-3930, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35702951

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumour. GBM cells have the ability to infiltrate into the surrounding brain tissue, which results in a significant decrease in the patient's survival rate. Infiltration is a consequence of the low adhesion and high migration of the tumour cells, two features being associated with the highly remodelled extracellular matrix (ECM). In this study, we report that ECM composition is partially regulated at the post-transcriptional level by miRNA. Particularly, we show that miR-218, a well-known miRNA suppressor, is involved in the direct regulation of ECM components, tenascin-C (TN-C) and syndecan-2 (SDC-2). We demonstrated that the overexpression of miR-218 reduces the mRNA and protein expression levels of TN-C and SDC-2, and subsequently influences biomechanical properties of GBM cells. Atomic force microscopy (AFM) and real-time migration analysis revealed that miR-218 overexpression impairs the migration potential and enhances the adhesive properties of cells. AFM analysis followed by F-actin staining demonstrated that the expression level of miR-218 has an impact on cell stiffness and cytoskeletal reorganization. Global gene expression analysis showed deregulation of a number of genes involved in tumour cell motility and adhesion or ECM remodelling upon miR-218 treatment, suggesting further indirect interactions between the cells and ECM. The results demonstrated a direct impact of miR-218 reduction in GBM tumours on the qualitative ECM content, leading to changes in the rigidity of the ECM and GBM cells being conducive to increased invasiveness of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Tenascina/genética , Tenascina/metabolismo
7.
Phys Rev E ; 104(2-1): 024409, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525582

RESUMO

The syndecans represent an ongoing research field focused on their regulatory roles in normal and pathological conditions. The role of syndecans in cancer progression is well documented, implicating their importance in diagnosis and even proposing various potential cancer treatments. Thus, the characterization of the unbinding properties at the single-molecule level will appeal to their use as targets for therapeutics. In our study, syndecan-1 and syndecan-4 were measured during the interaction with the vitronectin HEP II binding site. Our findings show that syndecans are calcium ion dependent molecules that reveal distinct, unbinding properties indicating the alterations in the structure of heparan sulfate (HS) chains, possibly in the chain sequence or sulfation pattern. In this way, we suppose that HS chain affinity to extracellular matrix proteins may govern cancer invasion by altering the syndecans' ability to interact with cancer-related receptors present in the tumor microenvironment, thereby promoting the activation of various signaling cascades regulating tumor cell behavior.


Assuntos
Heparitina Sulfato , Vitronectina , Transdução de Sinais , Análise Espectral
8.
Eur Biophys J ; 49(6): 485-495, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803311

RESUMO

The identification of cancer-related changes in cells and tissues based on the measurements of elastic properties using atomic force microscopy (AFM) seems to be approaching clinical application. Several limiting aspects have already been discussed; however, still, no data have shown how specific AFM probe geometries are related to the biomechanical evaluation of cancer cells. Here, we analyze and compare the nanomechanical results of mechanically homogenous polyacrylamide gels and heterogeneous bladder cancer cells measured using AFM probes of various tip geometry, including symmetric and non-symmetric pyramids and a sphere. Our observations show large modulus variability aligned with both types of AFM probes used and with the internal structure of the cells. Altogether, these results demonstrate that it is possible to differentiate between compliant and rigid samples of kPa elasticity; however, simultaneously, they highlight the strong need for standardized protocols for AFM-based elasticity measurements if applied in clinical practice including the use of a single type of AFM cantilever.


Assuntos
Hidrogéis/química , Microscopia de Força Atômica/métodos , Linhagem Celular , Módulo de Elasticidade , Humanos , Fenômenos Mecânicos
9.
Micron ; 137: 102888, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554186

RESUMO

The knowledge on how cells interact with microenvironment is particularly important in understanding the interaction of cancer cells with surrounding stroma, which affects cell migration, adhesion, and metastasis. The main cell surface receptors responsible for the interaction with extracellular matrix (ECM) are integrins, however, they are not the only ones. Integrins are accompanied to other molecules such as syndecans. The role of the latter has not yet been fully established. In our study, we would like to answer the question of whether integrins and syndecans, possessing similar functions, share also similar unbinding properties. By using single molecule force spectroscopy (SMFS), we conducted measurements of the unbinding properties of αVß1 and syndecan-4 in the interaction with vitronectin (VN), which, as each ECM protein, possesses two binding sites specific to integrins and syndecans. The unbinding force and the kinetic off rate constant derived from SMFS describe the stability of single molecular complex. Obtained data show one barrier transition for each complex. The proposed model shows that the unbinding of αVß1 from VN proceeds before the unbinding of SDC-4. However, despite different unbinding kinetics, the access to both receptors is needed for cell growth and proliferation.


Assuntos
Integrina alfa5beta1/química , Integrina alfa5beta1/metabolismo , Imagem Individual de Molécula/métodos , Sindecana-4/química , Sindecana-4/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Matriz Extracelular , Humanos , Integrina alfa5beta1/genética , Sindecana-4/genética , Neoplasias da Bexiga Urinária , Vitronectina/metabolismo
10.
J Mol Recognit ; 31(12): e2752, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30019775

RESUMO

Asthma is not a single disease, but recently, it is considered as a syndrome characterized through various clinical presentations and different etiopathologies. Large degree of the disease heterogeneity manifests in distinct characteristics that translate into variability of properties at single cell and molecular levels. Here, we conducted measurements of mechanical properties of bronchial tissue samples collected from patients suffering from asthma. The results obtained from different applied protocols for sample preparation may indicate that deep freezing and storage in liquid nitrogen, followed by consecutive unfreezing of tissue samples, preserve tissue mechanical properties as indicated by a parameter referred here as a tissue relative stiffness index. Tissue relative stiffness index quantifies both the degree of heterogeneity and deformability of tissue samples regarding healthy one. These studies demonstrate that the freezing protocol, optimized towards asthma tissue, can facilitate atomic force microscopy use what, together with recent findings on standardization of elasticity measurements, enables the measurements of large group of samples with minimized influence of errors stemming from the applied methodology of tissue stiffness determination.


Assuntos
Asma/patologia , Broncoscopia/métodos , Microscopia de Força Atômica/métodos , Adulto , Idoso , Asma/cirurgia , Fenômenos Biomecânicos , Biópsia , Criopreservação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanotecnologia , Preservação de Tecido
11.
Mol Ther ; 26(4): 1093-1108, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503200

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Mioblastos/transplante , Animais , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Distrofina/genética , Imunofluorescência , Dosagem de Genes , Expressão Gênica , Ordem dos Genes , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos mdx , Camundongos SCID , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Fenótipo , Transgenes , Transplante Autólogo
12.
J Mater Chem B ; 6(11): 1613-1621, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254277

RESUMO

Poly(n-butyl methacrylate) (PBMA) grafted polymer brushes attached to glass were fabricated in a three-step process involving surface initiated atom transfer radical polymerization. The surface properties of the coatings after subsequent fabrication steps were confirmed using ToF-SIMS and ellipsometry. Measurements of water contact angle and AFM revealed temperature-induced changes in the hydrophobicity and morphology of the coating. The glass transition temperatures (Tg) of the PBMA coatings with different thicknesses were determined from the AFM measurements. For the PBMA grafted brush coatings with thicknesses less than 62 nm, Tg increases sharply with increasing thickness. The PBMA grafted coatings of thickness equal to 86 nm and 43 nm as well as control glass substrates were used as substrates for culturing a urinary bladder cancer HTB-5 cell line. After 144 h of culturing, a well-developed monocellular layer may be observed on the PBMA coating of thickness equal to 86 nm. In turn, the cells incubated on thinner (43 nm) PBMA coatings as well as on a control glass sample only start to form a confluent layer.

13.
Semin Cell Dev Biol ; 73: 115-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694112

RESUMO

From the first experiments of the atomic force microscopy (AFM) with biological samples, the range of its potential applications grows extensively. One of them is the use of AFM to characterize biophysical fingerprints of cancer progression in search of non-labelled biomarkers of the disease. The technique offers various functionalities, starting from surface imaging to detection of interaction forces, delivering quantitative parameters that can describe changes characteristic for various diseases, including cancer. In this review, the special emphasis was laid on these studies that compare the AFM-derived properties of reference and cancerous cells using all functionalities from cellular deformability measurements to quantification of the interaction forces at the single-molecule and single-cell levels. Despite the large effort and evidence of the microscope applicability to detect pathologically altered cells, there are still practical challenges remained to be solved before AFM can be implemented for routine cancer tracking and diagnosis. To-date, the AFM can be used to achieve a better understanding of cancer-related processes and mechanisms that could be further employed to design high-resolution clinical assays in a quantitative way.


Assuntos
Adesão Celular , Microscopia de Força Atômica , Neoplasias/patologia , Adesividade , Elasticidade , Humanos
14.
Mol Membr Biol ; 32(5-8): 189-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26911703

RESUMO

Outer layer of cellular membrane contains ordered domains enriched in cholesterol and sphingolipids, called 'lipid rafts', which play various biological roles, i.e., are involved in the induction of cell death by apoptosis. Recent studies have shown that these domains may constitute binding sites for selected drugs. For example alkylphosphocholines (APCs), which are new-generation antitumor agents characterized by high selectivity and broad spectrum of activity, are known to have their molecular targets located at cellular membrane and their selective accumulation in tumor cells has been hypothesized to be linked with the alternation of biophysical properties of lipid rafts. To get a deeper insight into this issue, interactions between representative APC: erucylphosphocholine, and artificial lipid raft system, modeled as Langmuir monolayer (composed of cholesterol and sphingomyelin mixed in 1:2 proportion) were investigated. The Langmuir monolayer experiments, based on recording surface pressure-area isotherms, were complemented with Brewster angle microscopy results, which enabled direct visualization of the monolayers structure. In addition, the investigated monolayers were transferred onto solid supports and studied with AFM. The interactions between model raft system and erucylphosphocholine were analyzed qualitatively (with mean molecular area values) as well as quantitatively (with ΔG(exc) function). The obtained results indicate that erucylphosphocholine introduced to raft-mimicking model membrane causes fluidizing effect and weakens the interactions between cholesterol and sphingomyelin, which results in phase separation at high surface pressures. This leads to the redistribution of cholesterol molecules in model raft, which confirms the results observed in biological studies.


Assuntos
Antineoplásicos/química , Microdomínios da Membrana/química , Membranas Artificiais , Modelos Químicos , Fosforilcolina/análogos & derivados , Animais , Humanos , Fosforilcolina/química
15.
Colloids Surf B Biointerfaces ; 118: 270-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24780433

RESUMO

Poly(N-methacryloyl-l-leucine) (PNML) coatings were successfully fabricated via polymerization from peroxide initiator grafted to premodified glass substrate. Chemical composition and thickness of PNML coatings were determined using time of flight-secondary ion mass spectrometry (TOF- SIMS) and ellipsometry, respectively. PNML coatings exhibit thermal response of the wettability, between 4 and 28°C, which indicates a transition between hydrated loose coils and hydrophobic collapsed chains. Morphology of the PNML coating was observed with the AFM, transforming with increasing temperature from initially relatively smooth surface to rough and more structured surface. Protein adsorption observed by fluorescence microscopy for model proteins (bovine serum albumin and lentil lectin labeled with fluorescein isothiocyanate) at transition from 5 to 25°C, showed high affinity of PNML coating to proteins at all investigated temperatures and pH. Thus, PNML coating have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). The high proliferation growth of the human embryonic kidney cell (HEK 293) onto PNML coating was demonstrated, indicating its excellent cytocompatibility.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Leucina/análogos & derivados , Peptídeos/farmacologia , Soroalbumina Bovina/isolamento & purificação , Temperatura , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Leucina/farmacologia , Microscopia de Força Atômica , Microscopia de Fluorescência , Peptídeos/química , Polimerização/efeitos dos fármacos , Espectrometria de Massa de Íon Secundário , Água/química , Molhabilidade/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA