Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 689-707, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864845

RESUMO

Environmental stresses severely affect plant growth and crop productivity. Regulated by 14-3-3 proteins (14-3-3s), H+-ATPases (AHAs) are important proton pumps that can induce diverse secondary transport via channels and co-transporters for the abiotic stress response of plants. Many studies demonstrated the roles of 14-3-3s and AHAs in coordinating the processes of plant growth, phytohormone signaling, and stress responses. However, the molecular evolution of 14-3-3s and AHAs has not been summarized in parallel with evolutionary insights across multiple plant species. Here, we comprehensively review the roles of 14-3-3s and AHAs in cell signaling to enhance plant responses to diverse environmental stresses. We analyzed the molecular evolution of key proteins and functional domains that are associated with 14-3-3s and AHAs in plant growth and hormone signaling. The results revealed evolution, duplication, contraction, and expansion of 14-3-3s and AHAs in green plants. We also discussed the stress-specific expression of those 14-3-3and AHA genes in a eudicotyledon (Arabidopsis thaliana), a monocotyledon (Hordeum vulgare), and a moss (Physcomitrium patens) under abiotic stresses. We propose that 14-3-3s and AHAs respond to abiotic stresses through many important targets and signaling components of phytohormones, which could be promising to improve plant tolerance to single or multiple environmental stresses.


Assuntos
Proteínas 14-3-3 , Arabidopsis , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Arabidopsis/genética , ATPases Translocadoras de Prótons/genética , Evolução Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Stress Biol ; 3(1): 52, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032410

RESUMO

Arsenic (As) is a cancerogenic metalloid ubiquitously distributed in the environment, which can be easily accumulated in food crops like rice. Jasmonic acid (JA) and its derivatives play critical roles in plant growth and stress response. However, the role of endogenous JA in As accumulation and detoxification is still poorly understood. In this study, we found that JA biosynthesis enzymes Allene Oxide Synthases, OsAOS1 and OsAOS2, regulate As accumulation and As tolerance in rice. Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae (e.g. the basal lineage Klebsormidium flaccidum) - sister clade of land plants. Compared to other two AOSs, OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot. Loss-of-function of OsAOS1 (osaos1-1) showed elevated As concentration in grains, which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate [As(V)] but not arsenite [As (III)]. However, the mutation of OsAOS2 (osaos2-1) showed no such effect. Moreover, osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(V) and As(III). Disrupted expression of genes involved in As accumulation and detoxification, such as OsPT4, OsNIP3;2, and OsOASTL-A1, was observed in both osaos1-1 and osaos2-1 mutant lines. In addition, a As(V)-induced significant decrease in Reactive Oxygen Species (ROS) production was observed in the root of osaos1-1 but not in osaos2-1. Taken together, our results indicate OsAOS1 modulates both As allocation and detoxification, which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.

3.
Dev Comp Immunol ; 147: 104747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276930

RESUMO

The inflammatory cytokines TNF-ß and IFN-γ are important mediators of the vertebrate inflammatory response and coordinators of the immune system in regard to NF-κB signalling pathways. In this study, the TNF-ß and IFN-γ genes of yellowfin seabream, Acanthopagrus latus were identified, and the multiple sequence alignments, evolutionary relationships and gene expressions of the two genes were also determined. AlTNF-ß contained a 762 bp open reading frame (ORF) encoding 253 amino acids, while AlIFN-γ contained a 582 bp ORF encoding 193 amino acids. An amino-acid sequence alignment analysis showed that these proteins have highly conserved transmembrane structural domains among teleosts. Moreover, AlTNF-ß has a close affinity with TNF-ß of yellowfin seabream while AlIFN-γ has a high evolutionary correlation with A. regius and Sparus aurata. In addition, the mRNAs of AlTNF-ß and AlIFN-γ are widely expressed in various tissues. AlTNF-ß is highly expressed in gill and intestinal tissues, and the mRNA levels of AlIFN-γ are higher in spleen, skin, and gill tissues than in other tissues. Under transportation density stress, the mRNA level of AlTNF-ß was significantly elevated in the intestine of the high-density group, while AlTNF-ß transcription in the gills did not vary significantly among the density groups. Furthermore, AlIFN-γ expression was increased in liver, intestinal, and gill tissues under high transportation density. The results of this study show that TNF-ß and IFN-γ expression in yellowfin seabream is greatly affected by density stress. The density of 125 per bag for 4-5 cm fry or 1200 per bag for 1-2 cm fry is most suitable for the transportation of live fish. These results might provide a reference for further studies on the immunomodulatory response process and auxiliary function of immune stress of TNF and IFN genes in fish under density stress.


Assuntos
Perciformes , Dourada , Animais , Linfotoxina-alfa/metabolismo , Perciformes/genética , Interferon gama/genética , Interferon gama/metabolismo , Imunidade , RNA Mensageiro/metabolismo
4.
Plant Physiol Biochem ; 200: 107754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236064

RESUMO

Cadmium (Cd) contamination in agricultural soils has become a serious worldwide environmental problem threatening crop production and human health. Hydrogen peroxide (H2O2) is a critical second messenger in plant response to Cd exposure. However, its role in Cd accumulation in various organs of plants and the mechanistic basis of this regulation remains to be elucidated. In this study, we used electrophysiological and molecular approaches to understand how H2O2 regulates Cd uptake and translocation in rice plants. Our results showed that the pretreatment of H2O2 significantly reduced Cd uptake by rice roots, which was associated with the downregulation of OsNRAMP1 and OsNRAMP5. On the other hand, H2O2 promoted the root-to-shoot translocation of Cd, which might be attributed to the upregulation of OsHMA2 critical for Cd2+ phloem loading and the downregulation of OsHMA3 involved in the vacuolar compartmentalization of Cd2+, leading to the increased Cd accumulation in rice shoots. Furthermore, such regulatory effects of H2O2 on Cd uptake and translocation were notably amplified by the elevated level of exogenous calcium (Ca). Collectively, our results suggest that H2O2 can inhibit Cd uptake but increase root to shoot translocation through modulating the transcriptional levels of genes encoding Cd transporters, furthermore, application of Ca can amplify this effect. These findings will broaden our understanding of the regulatory mechanisms of Cd transport in rice plants and provide theoretical foundation for breeding rice for low Cd accumulation.


Assuntos
Oryza , Poluentes do Solo , Humanos , Cádmio/metabolismo , Peróxido de Hidrogênio/farmacologia , Oryza/metabolismo , Melhoramento Vegetal , Transporte Biológico , Proteínas de Membrana Transportadoras , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
5.
Plant Physiol Biochem ; 188: 47-59, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981439

RESUMO

Extreme weather events have become more frequent, increasing crop yield fluctuations in many regions and thus the risk to global food security. Breeding crop cultivars with improved tolerance to a combination of abiotic stresses is an effective solution to counter the adverse impact of climate change. The ever-increasing genomic data and analytical tools provide unprecedented opportunities to mine genes with tolerance to multiple abiotic stresses through bioinformatics analysis. We undertook an integrated meta-analysis using 260 transcriptome data of barley related to drought, salt, heat, cold, and waterlogging stresses. A total of 223 shared differentially expressed genes (DEGs) were identified in response to five abiotic stresses, and significantly enriched in 'glutathione metabolism' and 'monoterpenoid biosynthesis' pathways. Using weighted gene co-expression network analysis (WGCNA), we further identified 15 hub genes (e.g., MYB, WRKY, NADH, and GST4) and selected the GST4 gene for functional validation. HvGST4 overexpression in Arabidopsis thaliana enhanced the tolerance to multiple abiotic stresses, likely through increasing the content of glutathione to scavenge reactive oxygen species and alleviate cell membrane peroxidation. Furthermore, we showed that virus-induced gene silencing (VIGS) of HvGST4 in barley leaves exacerbated cell membrane peroxidation under five abiotic stresses, reducing tolerance to multiple abiotic stress. Our study provides a new solution for identifying genes with tolerance to multiple abiotic stresses based on meta-analysis, which could contribute to breeding new varieties adapted genetically to adverse environmental conditions.


Assuntos
Arabidopsis , Hordeum , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Glutationa , Hordeum/genética , Melhoramento Vegetal , Estresse Fisiológico/genética
6.
J Hazard Mater ; 438: 129498, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35803196

RESUMO

Heavy metal contamination is a serious environmental issue that jeopardize global food production and safety, while cadmium (Cd) is a most widely distributed heavy metal in the earth's crust and highly toxic to organisms. The available strategies of fighting against heavy metal contamination are not commonly used due to their ineffectiveness and time- or cost-consuming. Recently, nanotechnology-based ameliorative strategies have emerged as a potential alternative to physic-chemical techniques. In the current study, we used two barley genotypes, LJZ (Cd sensitive) and Pu-9 (Cd tolerant), to study the effects of exogenous calcium oxide nanoparticles (CaO NPs) in alleviating Cd stress. Cd exposure to barley plants led to significant reduction in morph-physiological, nutrient contents, photosynthetic rate, and large accumulation of Cd in plant tissues. However, CaO NPs application significantly increased plant biomass, activities of anti-oxidative enzymes (i.e., ascorbate peroxidase, catalase, superoxide dismutase, and glutathione reductase) and the content of non-enzymatic antioxidants (ascorbate and glutathione) accompanied by great reduction of malondialdehyde (MDA) and hydrogen peroxide contents under Cd stress. Furthermore, CaO NPs increased the expression levels of genes associated with anti-oxidative enzymes. The alleviation of Cd stress by CaO NPs is more obvious in Pu-9 than LJZ. It may be suggested that CaO NPs can be used as a potential chemical to alleviate Cd uptake and toxicity of the crops planted in the Cd-contaminated soil.


Assuntos
Hordeum , Nanopartículas , Antioxidantes/metabolismo , Cádmio/metabolismo , Compostos de Cálcio , Catalase/metabolismo , Hordeum/genética , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Óxidos , Plântula , Superóxido Dismutase/metabolismo
7.
Front Plant Sci ; 12: 761713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058944

RESUMO

Flowering is the key process for the sexual reproduction in seed plants. In gramineous crops, the process of flowering, which includes the actions of both glume opening and glume closing, is directly driven by the swelling and withering of lodicules due to the water flow into and out of lodicule cells. All these processes are considered to be controlled by aquaporins, which are the essential transmembrane proteins that facilitate the transport of water and other small molecules across the biological membranes. In the present study, the evolution of aquaporins and their contribution to flowering process in plants were investigated via an integration of genome-wide analysis and gene expression profiling. Across the barley genome, we found that HvTIP1;1, HvTIP1;2, HvTIP2;3, and HvPIP2;1 were the predominant aquaporin genes in lodicules and significantly upregulated in responding to glume opening and closing, suggesting the importance of them in the flowering process of barley. Likewise, the putative homologs of the above four aquaporin genes were also abundantly expressed in lodicules of the other monocots like rice and maize and in petals of eudicots like cotton, tobacco, and tomato. Furthermore, all of them were mostly upregulated in responding to the process of floret opening, indicating a conserved function of these aquaporin proteins in plant flowering. The phylogenetic analysis based on the OneKP database revealed that the homologs of TIP1;1, TIP1;2, TIP2;3, and PIP2;1 were highly conserved during the evolution, especially in the angiosperm species, in line with their conserved function in controlling the flowering process. Taken together, it could be concluded that the highly evolutionary conservation of TIP1;1, TIP1;2, TIP2;3 and PIP2;1 plays important roles in the flowering process for both monocots and eudicots.

8.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137932

RESUMO

Cadmium (Cd) contamination in soils poses great risks to both agricultural production and human health. Calcium (Ca) is an essential element playing a significant role in protecting plants against Cd toxicity. However, how Ca affects Cd uptake and translocation in rice is still not fully elucidated. In this study, the regulatory role of Ca in Cd uptake and upward translocation was investigated in rice at different growth stages. Our results showed that the supplement of 5 mM Ca significantly reduced Cd uptake by rice roots, because of their competition for Ca-permeable channels as an absorption site and Ca-induced downregulation of OsNRAMP1 and OsNRAMP5. However, Ca application facilitated the upward translocation of Cd by both upregulating OsHMA2 to induce xylem loading of Cd and downregulating OsHMA3 to reduce vacuolar sequestration of Cd. Such contrary results suggested a double-edged role of Ca in regulating root Cd uptake and root-to-shoot Cd translocation in rice. Although it increased Cd content in the aboveground vegetative tissues during the whole growth period, the addition of 5 mM Ca eventually decreased Cd content in rice grains at the ripening stage. All these results suggest that Ca-based amendments possess great potential for the production of low-Cd rice grains.


Assuntos
Cádmio/toxicidade , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Canais de Cálcio/genética , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
9.
Environ Pollut ; 265(Pt B): 114979, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32585549

RESUMO

Understanding of cadmium (Cd) uptake mechanism and development of lower Cd crop genotypes are crucial for combating its phytotoxicity and meeting 70% increase in food demand by 2050. Bio-accumulation of Cd continuously challenges quality of life specifically in regions without adequate environmental planning. Here, we investigated the mechanisms operating in Cd tolerance of two rice genotypes (Heizhan-43 and Yinni-801). Damage to chlorophyll contents and PSII, histochemical staining and quantification of reactive oxygen species (ROS), cell viability and osmolyte accumulation were studied to decipher the interactions between Cd and zinc (Zn) by applying two Cd and two Zn levels (alone as well as combined). Cd2+ and Ca2+ fluxes were also measured by employing sole Cd100 (100 µmol L-1) and Zn50 (50 µmol L-1), and their combination with microelectrode ion flux estimation (MIFE) technique. Cd toxicity substantially reduced chlorophyll contents and maximal photochemical efficiency (Fv/Fm) compared to control plants. Zn supplementation reverted the Cd-induced toxicity by augmenting osmoprotectants and interfering with ROS homeostasis under combined treatments, particularly in Yinni-801 genotype. Fluorescence microscopy indicated a unique pattern of live and dead root cells, depicting more damage with Cd10, Cd15 and Cd15+Zn50. Our results confer that Cd2+ impairs the uptake of Ca2+ whereas, Zn not only competes with Cd2+ but also Ca2+, thereby modifying ion homeostasis in rice plants. This study suggests that exogenous application of Zn is beneficial for rice plants in ameliorating Cd toxicity in a genotype and dose dependent manner by minimizing ROS generation and suppressing collective oxidative damage. The observations confer that Yinni-801 performed better than Heizhan-43 genotype mainly under combined Zn treatments with low-Cd, presenting Zn fortification as a solution to increase rice production.


Assuntos
Oryza , Fotossíntese , Cádmio , Cátions , Homeostase , Cinética , Qualidade de Vida , Espécies Reativas de Oxigênio , Zinco
10.
Biomed Res Int ; 2020: 5081323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461996

RESUMO

The histone demethylase JMJD family is involved in various physiological and pathological functions. However, the roles of JMJD1A in the cardiovascular system remain unknown. Here, we studied the function of JMJD1A in cardiac hypertrophy. The mRNA and protein levels of JMJD1A were significantly downregulated in the hearts of human patients with hypertrophic cardiomyopathy and the hearts of C57BL/6 mice underwent cardiac hypertrophy induced by transverse aortic constriction (TAC) surgery or isoproterenol (ISO) infusion. In neonatal rat cardiomyocytes (NRCMs), siRNA-mediated JMJD1A knockdown facilitated ISO or angiotensin II-induced increase in cardiomyocyte size, protein synthesis, and expression of hypertrophic fetal genes, including atrial natriuretic peptide (Anp), brain natriuretic peptide (Bnp), and Myh7. By contrast, overexpression of JMJD1A with adenovirus repressed the development of ISO-induced cardiomyocyte hypertrophy. We observed that JMJD1A reduced the production of total cellular and mitochondrial levels of reactive oxygen species (ROS), which was critically involved in the effects of JMJD1A because either N-acetylcysteine or MitoTEMPO treatment blocked the effects of JMJD1A deficiency on cardiomyocyte hypertrophy. Mechanism study demonstrated that JMJD1A promoted the expression and activity of Catalase under basal condition or oxidative stress. siRNA-mediated loss of Catalase blocked the protection of JMJD1A overexpression against ISO-induced cardiomyocyte hypertrophy. These findings demonstrated that JMJD1A loss promoted cardiomyocyte hypertrophy in a Catalase and ROS-dependent manner.


Assuntos
Cardiomegalia , Catalase/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Miócitos Cardíacos , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Catalase/genética , Células Cultivadas , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Plant Cell Environ ; 43(11): 2591-2605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32196121

RESUMO

This study aimed to reveal the mechanistic basis of the melatonin-mediated amelioration of salinity stress in plants. Electrophysiological experiments revealed that melatonin decreased salt-induced K+ efflux (a critical determinant of plant salt tolerance) in a dose- and time-dependent manner and reduced sensitivity of the plasma membrane K+ -permeable channels to hydroxyl radicals. These beneficial effects of melatonin were abolished by NADPH oxidase blocker DPI. Transcriptome analyses revealed that melatonin induced 585 (448 up- and 137 down-regulated) and 59 (54 up- and 5 down-regulated) differentially expressed genes (DEGs) in the root tip and mature zone, respectively. The most noticeable changes in the root tip were melatonin-induced increase in the expression of several DEGs encoding respiratory burst NADPH oxidases (OsRBOHA and OsRBOHF), calcineurin B-like/calcineurin B-like-interacting protein kinase (OsCBL/OsCIPK), and calcium-dependent protein kinase (OsCDPK) under salt stress. Melatonin also enhanced the expression of potassium transporter genes (OsAKT1, OsHAK1, and OsHAK5). Taken together, these results indicate that melatonin improves salt tolerance in rice by enabling K+ retention in roots, and that the latter process is conferred by melatonin scavenging of hydroxyl radicals and a concurrent OsRBOHF-dependent ROS signalling required to activate stress-responsive genes and increase the expression of K+ uptake transporters in the root tip.


Assuntos
Melatonina/metabolismo , NADPH Oxidases/metabolismo , Oryza/metabolismo , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Perfilação da Expressão Gênica , Homeostase , Melatonina/farmacologia , Melatonina/fisiologia , Microeletrodos , NADPH Oxidases/fisiologia , Oryza/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Estresse Salino , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia
12.
J Nat Prod ; 82(9): 2653-2658, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31419139

RESUMO

Two cysteine residue containing merocytochalasans (cyschalasins A and B, 1 and 2) and two 17,18-seco-aspochalasins (secochalasins A and B, 3 and 4) were isolated from the endophytic fungus Aspergillus micronesiensis. Cyschalasins A and B represent a new type of merocytochalasan featuring the fusion of an aspochalasin with a modified cysteine residue. Secochalasins A and B are the first 17,18-seco-aspochalasins to be reported and represent a previously undescribed carbon skeleton. Plausible biosynthetic pathways of 1-4 were proposed. Compounds 1 and 2 were cytotoxic and active against Gram-positive bacteria.


Assuntos
Aspergillus/química , Cisteína/química , Citocalasinas/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
13.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443572

RESUMO

In this work, the effect of drought on K+ uptake in root and its translocation from root to shoot was investigated using six barley genotypes contrasting in drought tolerance. Results showed that drought conditions caused significant changes in K+ uptake and translocation in a time- and genotype-specific manner, which consequently resulted in a significant difference in tissue K+ contents and drought tolerance levels between the contrasting barley genotypes. The role of K+ transporters and channels and plasma membrane (PM) H+-ATPase in barley's adaptive response to drought stress was further investigated at the transcript level. The expression of genes conferring K+ uptake (HvHAK1, HvHAK5, HvKUP1, HvKUP2 and HvAKT1) and xylem loading (HvSKOR) in roots were all affected by drought stress in a time- and genotype-specific manner, indicating that the regulation of these K+ transporters and channels is critical for root K+ uptake and root to shoot K+ translocation in barley under drought stress. Furthermore, the barley genotypes showed a strong correlation between H+ efflux and K+ influx under drought stress, which was further confirmed by the significant up-regulation of HvHA1 and HvHA2. These results suggested an important role of plasma membrane H+-ATPase activity and/or expression in regulating the activity of K+ transporters and channels under drought stress. Taken together, it may be concluded that the genotypic difference in drought stress tolerance in barley is conferred by the difference in the ability to regulate K+ transporters and channels in root epidermis and stele.


Assuntos
Adaptação Biológica , Membrana Celular/metabolismo , Secas , Hordeum/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Potássio/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Genótipo , Transporte de Íons , Concentração Osmolar , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética
14.
Bioorg Chem ; 86: 176-182, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711700

RESUMO

Dibrefeldins A and B (1 and 2), two unexpected brefeldin A (BFA) dimers, as well as brefeldin F (3), brefeldin G (4), and 14-hydroxy-BFA (5), three new BFA derivatives, together with three new naturally occurring BFA derivatives (6-8) and four known analogues (9-12), were isolated from the fungus Penicillium janthinellum. Dibrefeldins A and B (1 and 2) represent the first examples of BFA dimers formed by an esterification between two BFA monomer units. Brefeldin F (3) has an α,ß-unsaturated γ-lactone ring, and this moiety was first discovered in naturally occurring BFA derivatives. The structures and relative/absolute configurations of these derivatives were elucidated by extensive spectroscopic methods, 13C NMR calculations, and single-crystal X-ray diffraction. Compounds 1, 2, 8, and 9 showed excellent cytotoxic activities against six cancer cell lines with IC50 values ranging from 0.01 to 4.45 µM.


Assuntos
Antineoplásicos/farmacologia , Brefeldina A/farmacologia , Penicillium/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Brefeldina A/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
15.
Phytochemistry ; 156: 159-166, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30308383

RESUMO

Brasilanones A-F and asperterreusines A-C, undescribed brasilane sesquiterpenoids and dihydrobenzofuran derivatives, were isolated from the marine-derived fungus Aspergillus terreus [CFCC 81836]. Their structures with absolute configurations were elucidated on the basis of spectroscopic data, X-ray crystallographic analyses, and electronic circular dichroism (ECD) calculations. Brasilanones A-F are unusual brasilane sesquiterpenoids with an α,ß-unsaturated ketone unit, interestingly, brasilanones B-D are stereo isomers. All of the isolates were evaluated for their inhibitory activities against NO production and cytotoxic activities against five human cancer cell lines (HL-60, SW-480, A-549, MCF-7, and SMMC-7721). Brasilanones A and E showed moderate inhibitory effect with NO inhibition rates of 47.7% (p < 0.001) and 37.3% (p < 0.001) at the concentration of 40 µM. Asperterreusines A showed cytotoxicity against HL-60 and SW-480 cell lines with IC50 values of 15.3 and 25.7 µM, respectively.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aspergillus/química , Benzofuranos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Benzofuranos/química , Benzofuranos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Modelos Moleculares , Conformação Molecular , Óxido Nítrico/biossíntese , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
16.
Org Lett ; 20(21): 6817-6821, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30350674

RESUMO

Cytochathiazines A-C (1-3), which represent a new type of merocytochalasan, were isolated from coculture of Chaetomium globosum and Aspergillus flavipes. Compounds 1-3 are the first natural products featuring an unprecedented 2 H-1,4-thiazine functionality. Plausible biosynthetic pathways for 1-3 with a chaetoglobosin and a dipeptide as the main constitutional units were proposed. Compound 2 induced apoptosis in leukemia cells through the activation of caspase-3 and the degradation of poly ADP-ribose polymerase.


Assuntos
Aspergillus/química , Chaetomium/química , Tiazinas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Vias Biossintéticas , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia/patologia , Estrutura Molecular , Relação Estrutura-Atividade , Tiazinas/farmacologia
17.
J Exp Bot ; 69(21): 5279-5291, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30099559

RESUMO

To develop elite crops with low cadmium (Cd), a fundamental understanding of the mechanism of Cd uptake by crop roots is necessary. Here, a new mechanism for Cd2+ entry into rice root cells was investigated. The results showed that Cd2+ influx in rice roots exhibited spatially and temporally dynamic patterns. There was a clear longitudinal variation in Cd uptake along rice roots, with the root tip showing much higher Cd2+ influx and concentration than the root mature zone, which might be due to the much higher expression of the well-known Cd transporter genes OsIRT1, OsNRAMP1, OsNRAMP5, and OsZIP1 in the root tip. Both the net Cd2+ influx and the uptake of Cd in rice roots were highly inhibited by ion channel blockers Gd3+ and TEA+, supplementation of Ca2+ and K+, and the plasma membrane H+-ATPase inhibitor vanadate, with Gd3+ and Ca2+ showing the most inhibitory effects. Furthermore, Ca2+- or Gd3+-induced reduction in Cd2+ influx and Cd uptake did not coincide with the expression of Cd transporter genes, but with that of two Ca channel genes, OsAAN4 and OsGLR3.4. These results indicate that Cd transporters are in part responsible for Cd2+ entry into rice root, and provide a new perspective that the Ca channels OsAAN4 and OsGLR3.4 might play an important role in rice root Cd uptake.


Assuntos
Cádmio/farmacologia , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Cádmio/metabolismo , Canais de Cálcio/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Fitoterapia ; 124: 127-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29106995

RESUMO

Azacoccones A-E (1-5), five new aza-epicoccone derivatives, were isolated from the culture of Aspergillus flavipes. Their structures were determined by extensive NMR spectroscopic analyses and the absolute configuration of 5 was determined by electronic circular dichroism (ECD) calculation. Compounds 1-5 are proposed to be generated via a Pictet-Spengler reaction-based biosynthetic route starting from the precursor flavipin. Pictet-Spengler reaction is rarely found in the fungal kingdom, which indicated the distinctive nature of 1-5. Compounds 3 and 5 exhibit significant free radical scavenging activities with IC50 values of 4.0 and 2.4µg/mL, respectively, which are better than the positive control trolox (4.55µg/mL).


Assuntos
Aspergillus/química , Polifenóis/isolamento & purificação , Dicroísmo Circular , Sequestradores de Radicais Livres/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular
19.
Fitoterapia ; 123: 18-22, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28947170

RESUMO

An endophytic fungal strain named Trichoderma atroviride was isolated from the bulb of Lycoris radiata. Following cultivation on rice medium, a novel 3-amino-5-hydroxy-5-vinyl-2-cyclopenten-1-one dimer, atrichodermone A (1), a new cyclopentenone derivative, atrichodermone B (2), and a new sesquiterpene, atrichodermone C (3), together with three known cyclopentenone derivatives (4-6) were isolated. Their structures were elucidated by extensive spectroscopic (UV, IR, ECD, HRESIMS, and NMR) data analyses, and absolute configurations of the new compounds were determined by comparing their experimental ECD spectra with structurally similar compounds and computational analyses of their electronic circular dichroism (ECD) spectra. Compounds 1-3 were evaluated for their cytotoxicity against HL60 and U937 cell lines, as well as anti-inflammatory effect against the production of the pro-inflammatory cytokines TNF-α and IL-1ß.


Assuntos
Ciclopentanos/química , Sesquiterpenos/química , Trichoderma/química , Animais , Ciclopentanos/isolamento & purificação , Células HL-60 , Humanos , Interleucina-1beta/metabolismo , Lycoris/microbiologia , Camundongos , Estrutura Molecular , Raízes de Plantas/microbiologia , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo , Células U937
20.
Biomed Pharmacother ; 95: 1631-1635, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28950663

RESUMO

Betulinic acid (BA) is a naturally occurring pentacyclic lupane group triterpenoid, has reported to protect cerebral ischemia. Present study evaluates the protective effect of betulinic acid on the isoflurane-induced neuronal damage in neonatal mice. All the mice of 7days age were exposed to isoflurane (2%; 2h) for the duration of 3day. At the end of protocol cognitive function was evaluated by Morris water maze (MWM) test. However count of apoptotic cells were estimated by TUNEL staining. Concentration of oxidative stress parameters [superoxide dismutase (SOD); catalase (CAT) and reduced glutathione (GSH)], cytokines [tumor necrosis factor (TNF-α); interlukin-6 (IL-6) and IL-1ß] and expressions of caspase 3, FAS and FASL were estimated in the neuronal cells. Result of the study suggested that treatment with betulinic acid significantly reduces the escape latency and enhances platform crossing time than negative control group. Count of apoptotic cells were also found to be reduced in BA treated group of mice than negative control group. Moreover treatment with BA significantly attenuates the concentration of inflammatory cytokines and oxidative stress in isoflurane induced neonatal mice. However expressions of caspase-3, FAS/FASL was found to be significantly reduced in BA treated group of mice than negative control group. Present study concludes the neuroprotective effect of betulinic acid in isoflurane-induced brain damage in developing brain by attenuating the apoptosis through Fas/FASL pathway inhibition.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Ligante Fas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Triterpenos/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Citocinas/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Isoflurano/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Triterpenos Pentacíclicos , Ratos , Transdução de Sinais/efeitos dos fármacos , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA