Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952799

RESUMO

Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this backdrop, this study aimed to fabricate an environmental-friendly UWSO textile using biobased materials. To achieve this, hydrogel consisting of chitosan (CS) and poly(tannic acid) (PTA) were formed and coated on cotton fabric (CTF) via dip-coating followed by oxidative polymerization. CS&PTA hydrogel endowed the CTF with a rough surface and high surface energy, leading to an UWSO CTF with an underwater oil contact angle as high as 166.84°. The CS&PTA/CTF had excellent separation capability toward various oil/water mixtures, showing separation efficiency above 99.84 % and water flux higher than 23, 999 L m-2 h-1. Moreover, CS&PTA/CTF possessed excellent mechanical and environmental stability with underwater superoleophobicity unchanged after sandpaper friction, ultrasonication, organic solvents, NaCl (m/v, 30 %) solution, and acid/base solution immersion, due to the strong interaction between the hydrogel and cotton fabric generated by the mussel-inspired adhesion owing to the presence of PTA. The fully biobased UWSO CTF exhibits great promising to be an alternative to traditional superwetting materials for separation of oil/water mixtures.


Assuntos
Quitosana , Hidrogéis , Humanos , Caquexia , Têxteis
2.
Int J Biol Macromol ; 209(Pt A): 279-289, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398058

RESUMO

Superhydrophilic and underwater superoleophobic materials exhibit excellent oil/water separation performance but are usually fabricated from nonrenewable and nondegradable feedstocks and thus would cause secondary pollution after use. Herein, we report a fully biobased and mussel-inspired underwater superoleophobic hydrogel coated cotton fabric (CF) prepared by surface coating and subsequent oxidation polymerization of chitosan & dopamine mixtures. The obtained chitosan & polydopamine hydrogel coated CF (CS&PDA/CF) showed superhydrophilicity and underwater superoleophobicity, due to the formed rough surface structure with hydrophilic complex hydrogel. The CS&PDA/CF exhibited excellent oil/water separation performance with separation efficiency higher than 99.5% for various oil/water mixtures. Moreover, the CS&PDA/CF showed excellent resistance against various harsh conditions such as boiling water, ultrasonication, and concentrated salt solution, due to the mussel-inspired strong adhesion stabilized structure and morphology. We believe that the fully biobased and mussel-inspired underwater superoleophobic cotton fabric shows great potential as an eco-friendly and high-efficient oil/water separation material.


Assuntos
Quitosana , Purificação da Água , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Óleos/química
3.
Carbohydr Polym ; 244: 116449, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32536394

RESUMO

Superhydrophilic and underwater superoleophobic textiles exhibit excellent oil/water separation performance but are limited by the poor stability and environmental incompatibility. Inspired by strong adhesion of marine mussels, we designed and fabricated a stable and eco-friendly superhydrophilic and underwater superoleophobic cotton fabric (CF) from all renewable resources through in-situ surface deposition of polydopamine (PDA) particles followed by adsorption of hydrophilic chitosan via dip coating at room temperature. The as-prepared superhydrophilic and underwater superoleophobic CF exhibited outstanding oil/water separation performance with separation efficiency and water flux higher than 99 % and 15,000 L m-2 h-1, respectively. Moreover, it not only showed excellent resistance to mechanical abrasion and ultrasound treatment but also had outstanding superwetting stability against acid/alkali/salt erosion. We believed that the eco-friendly superhydrophilic and underwater superoleophobic CF would exhibit great potential in oil/water separation especially under harsh conditions.


Assuntos
Quitosana/química , Fibra de Algodão , Indóis/química , Polímeros/química , Purificação da Água , Emulsões/química , Filtração , Óleos/química
4.
Int J Biol Macromol ; 140: 1175-1182, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465799

RESUMO

Traditional superhydrophobic cotton fabrics (SCFs) for oil/water separation were usually fabricated by surface coating with inorganic nanoparticles combined with nonrenewable and nonbiodegradable or even toxic fossil-based chemicals, which would lead to secondary environmental pollution after their lifetime. In this study, we report robust, nanoparticle-free, fluorine-free SFC, which was prepared by acid etching followed by surface coating with epoxidized soybean oil resin (CESO) and subsequent modification with stearic acid (STA). No toxic compound and no nanoparticle were included within the SCF and all the raw materials including cotton fabric, CESO and STA are biodegradable and derived from biological resources. The SCF showed excellent mechanical stability and chemical/environmental resistances. The superhydrophobicity of the SFC survived from mechanical abrasion, tape peeling, ultrasonication, solvent erosion and low/high temperature exposure. The SCF also exhibited good acid/alkali resistance with contact angle over 150° toward different pH water droplets. Moreover, the SCF could efficiently separate oil/water mixtures with efficiency above 97.9% and the superhydrophobicity remained after reusing for at least 10 times. The fully biological-derived SCF with excellent mechanical and chemical resistances exhibit great potential for separation of oil/water mixtures.


Assuntos
Fibra de Algodão , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Óleo de Soja/química , Água/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Temperatura , Molhabilidade
5.
Carbohydr Polym ; 199: 390-396, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143143

RESUMO

Cellulose nanocrystal (CNC) with renewability, biodegradability, and nanoscale size was used as the rough structure component instead of inorganic nanoparticles to fabricate renewable and degradable superhydrophobic cotton fabric via a dip-coating method with cured epoxidized oil resin (CESO) as the binder. The superhydrophobic cotton fabric could selectively absorb oil from oily water and could separate various oil/water mixture very efficiently with separation efficiency higher than 98%. The superhydrophobic cotton fabric showed excellent stability, making it reusable for several times without lowering separation efficiency. Moreover, the superhydrophobic cotton fabric exhibited excellent solvent and chemical resistances. Furthermore, the superhydrophobic cellulosic fabric was degradable with weight loss of 14.4 wt% after hydrolytic degradation in phosphate buffer solution (pH 7.4) at 37 °C for 10 weeks. The superhydrophobic cotton fabric may exhibit great viability as sustainable and degradable alternative to traditional nonrenewable and non-degradable superhydrophobic materials in oil/water separation.

6.
ACS Macro Lett ; 1(8): 965-968, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35607052

RESUMO

Novel urethane ionic groups were incorporated into biodegradable poly(ethylene succinate) (PES) by chain extension reaction of PES diol (HO-PES-OH) and diethanolamine hydrochloride (DEAH) using hexamethylene diisocyanate (HDI) as a chain extender. The synthesized polymer was a novel segmented poly(ester urethane) ionomer (PESI) in which the soft segments were formed by reaction of HO-PES-OH with HDI and the hard segments that contained ionic groups were derived from reaction of DEAH with HDI. The crystallization rate of PESI was dramatically accelerated when 3 mol % urethane ionic groups were incorporated. However, the crystallization mechanism did not change. The significant acceleration in crystallization rate was attributed to the improved nucleation efficiency by incorporation of the urethane ionic group, because PESI showed significantly enhanced nucleation density but slightly slowed spherurlitic growth rate in comparison with PES which was synthesized by chain extension reaction of HO-PES-OH with HDI. The increased nucleation efficiency was ascribed to the aggregation of hard segments of PESI induced by the ionic interactions.

7.
J Phys Chem B ; 114(46): 14827-33, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21033693

RESUMO

Miscibility and crystallization behaviors of poly(ethylene succinate)/poly(p-dioxanone) (PES/PPDO) blends were investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). PES/PPDO blends are completely miscible as proved by the single grass transition temperature (T(g)) dependence of composition and decreasing crystallization temperature of the blends in comparison with the respective component. POM observation suggests that simultaneous crystallization of PES and PPDO components in the blends took place, spherulites of one component can crystallize inside the spherulites of the other component, and the unique interpenetrated crystalline morphology has been formed for the blends in the full composition range. Isothermal crystallization kinetics of the blends was studied by DSC and the data were analyzed by the Avrami equation. The results suggest that the crystallization mechanisms of the blends were unchanged but the overall crystallization rates were slowed down compared with neat PES and neat PPDO. WAXD results indicate that the crystal structures of PES and PPDO did not change in the blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA