Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(11): 3464-3480, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37553868

RESUMO

Herbivore-induced plant volatiles (HIPVs) are critical compounds that directly or indirectly regulate the tritrophic interactions among herbivores, natural enemies and plants. The synthesis and release of HIPVs are regulated by many biotic and abiotic factors. However, the mechanism by which multiple factors synergistically affect HIPVs release remains unclear. Tea plant (Camellia sinensis) is the object of this study because of its rich and varied volatile metabolites. In this study, benzyl nitrile was released from herbivore-attacked tea plants more in the daytime than at night, which was consistent with the feeding behaviour of tea geometrid (Ectropis grisescens Warren) larvae. The Y-tube olfactometer assay and insect resistance analysis revealed that benzyl nitrile can repel tea geometrid larvae and inhibit their growth. On the basis of enzyme activities in transiently transformed Nicotiana benthamiana plants, CsCYP79 was identified as a crucial regulator in the benzyl nitrile biosynthetic pathway. Light signalling-related transcription factor CsPIF1-like and the jasmonic acid (JA) signalling-related transcription factor CsMYC2 serve as the activator of CsCYP79 under light and damage conditions. Our study revealed that light (abiotic factor) and herbivore-induced damage (biotic stress) synergistically regulate the synthesis and release of benzyl nitrile to protect plants from diurnal herbivorous tea geometrid larvae.


Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Herbivoria , Nitrilas/metabolismo , Larva/fisiologia , Chá/metabolismo
2.
Food Res Int ; 161: 111882, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192914

RESUMO

In China, the environmental conditions in mountainous regions are suitable for producing high-quality tea, but the underlying mechanism is unknown. Analyses of published data revealed tea leaves harvested at high altitudes are associated with high-quality tea, possibly because of the effects of light and temperature. This was confirmed by simulating the changes induced by temperature and light at different altitudes. Catechin biosynthesis was inhibited by high altitudes, whereas free amino acid contents increased, leading to a decrease in polyphenol to amino acids ratio. Under simulated high-altitude conditions, increases in the abundance of l-theanine and other amino acids were due to the increase in precursor contents and chloroplast protein hydrolysis, respectively. In addition, some aroma compound contents increased in fresh or wounded leaves because of up-regulated expression of key structural genes. Overall, tea taste and aroma were enhanced by simulated high-altitude conditions. This study provides the basis for enhancing low-quality tea raw materials.


Assuntos
Camellia sinensis , Catequina , Aminoácidos/metabolismo , Camellia sinensis/química , Catequina/metabolismo , Polifenóis/metabolismo , Chá/química , Temperatura
3.
J Agric Food Chem ; 69(38): 11204-11215, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34544239

RESUMO

Herbivore-induced plant volatiles (HIPVs) play an important role in insect resistance. As a common HIPV in tea plants (Camellia sinensis), ß-ocimene has shown anti-insect function in other plants. However, whether ß-ocimene in tea plants also provides insect resistance, and its mechanism of synthesis and emission are unknown. In this study, ß-ocimene was confirmed to interfere with tea geometrid growth via signaling. Light was identified as the key factor controlling regular emission of ß-ocimene induced by the wounding from tea geometrids. ß-Ocimene synthase (CsBOS1) was located in plastids and catalyzed ß-ocimene formation in overexpressed tobacco. CsBOS1 expression in tea leaves attacked by tea geometrids showed a day-low and night-high variation pattern, while CsABCG expression involved in volatile emission showed the opposite pattern. These two genes might regulate the regular ß-ocimene emission from tea plants induced by tea geometrid attack. This study advances the understanding on HIPV emission and signaling in tea plants.


Assuntos
Camellia sinensis , Monoterpenos Acíclicos , Alcenos , Animais , Herbivoria , Insetos , Folhas de Planta , Chá
4.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784431

RESUMO

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content-regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


Assuntos
Camellia sinensis/química , Ácido Gálico/metabolismo , Especificidade de Órgãos , Antifúngicos/farmacologia , Camellia sinensis/microbiologia , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Folhas de Planta/química , Frações Subcelulares/metabolismo
5.
Food Res Int ; 129: 108842, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32036878

RESUMO

Catechins and theaflavins are important metabolites contributing to tea function and quality. Catechins are known to transform into theaflavins during the tea manufacturing process, but the same transformation in preharvest tea leaves is unknown. Herein, we determined that shade treatment (dark), an agronomic practise widely used in tea cultivation, reduced the contents of most catechins, but increased the theaflavin contents, in preharvest tea leaves (cv. Yinghong No.9). This was attributed to the activation of polyphenoloxidase (PPO) activity in darkness. Furthermore, CsPPO3 was highly expressed under darkness, and thus CsPPO3 had been cloned, sequenced, and characterization. The CsPPO3 recombinant protein exhibited PPO function. Furthermore, shade treatment also reduced the catechin contents and increased the theaflavin contents in Yabukita and Hoshinomidori, suggesting that this phenomenon might not be specific to certain tea cultivars. This information will aid in understanding of theaflavin formation and its response to environmental factors at the preharvest tea stage.


Assuntos
Biflavonoides/metabolismo , Camellia sinensis/enzimologia , Catequina/metabolismo , Catecol Oxidase/metabolismo , Luz , Folhas de Planta/enzimologia , Biflavonoides/química , Camellia sinensis/química , Catequina/química , Catecol Oxidase/genética , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Estrutura Molecular , Folhas de Planta/química , Regulação para Cima
6.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450700

RESUMO

Herbivore-induced plant volatiles (HIPVs) play important ecological roles in defense against stresses. In contrast to model plants, reports on HIPV formation and function in crops are limited. Tea (Camellia sinensis) is an important crop in China. α-Farnesene is a common HIPV produced in tea plants in response to different herbivore attacks. In this study, a C. sinensis α-farnesene synthase (CsAFS) was isolated, cloned, sequenced, and functionally characterized. The CsAFS recombinant protein produced in Escherichia coli was able to transform farnesyl diphosphate (FPP) into α-farnesene and also convert geranyl diphosphate (GPP) to ß-ocimene in vitro. Furthermore, transient expression analysis in Nicotiana benthamiana plants indicated that CsAFS was located in the cytoplasm and could convert FPP to α-farnesene in plants. Wounding, to simulate herbivore damage, activated jasmonic acid (JA) formation, which significantly enhanced the CsAFS expression level and α-farnesene content. This suggested that herbivore-derived wounding induced α-farnesene formation in tea leaves. Furthermore, the emitted α-farnesene might act as a signal to activate antibacterial-related factors in neighboring undamaged tea leaves. This research advances our understanding of the formation and signaling roles of common HIPVs in crops such as tea plants.


Assuntos
Herbivoria , Folhas de Planta/metabolismo , Sesquiterpenos/metabolismo , Chá/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Fenômenos Fisiológicos Vegetais , Transdução de Sinais , Chá/classificação , Chá/genética
7.
J Agric Food Chem ; 67(24): 6716-6724, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31135151

RESUMO

Insect attack is known to induce a high accumulation of volatile metabolites in tea ( Camellia sinensis). However, little information is available concerning the effect of insect attack on tea quality-related nonvolatile specialized metabolites. This study aimed to investigate the formation of characteristic nonvolatile specialized metabolites in tea leaves in response to attack by major tea insects, namely, tea green leafhoppers and tea geometrids, and determine the possible involvement of phytohormones in metabolite formation resulting from insect attack. Both tea green leafhopper and tea geometrid attacks increased the jasmonic acid and salicylic acid contents. The abscisic acid content was only increased under tea green leafhopper attack, perhaps due to special continuous piercing-sucking wounding. Tea green leafhopper attack induced the formation of theaflavins from catechins under the action of polyphenol oxidase, while tea geometrid attack increased the l-theanine content. Exogenous phytohormone treatments can affect the caffeine and catechin contents. These results will help to determine the influence of major tea pest insects on important tea quality-related metabolites and enhance understanding of the relationship of phytohormones and quality-related nonvolatile metabolite formation in tea exposed to tea pest insect attacks.


Assuntos
Camellia sinensis/metabolismo , Hemípteros/fisiologia , Folhas de Planta/química , Folhas de Planta/parasitologia , Animais , Biflavonoides/análise , Biflavonoides/metabolismo , Camellia sinensis/química , Camellia sinensis/parasitologia , Catequina/análise , Catequina/metabolismo , Ciclopentanos/análise , Ciclopentanos/metabolismo , Glutamatos/análise , Glutamatos/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Ácido Salicílico/análise , Ácido Salicílico/metabolismo
8.
Food Chem ; 292: 204-210, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31054666

RESUMO

Although specialized metabolite distributions in different tea (Camellia sinensis) tissues has been studied extensively, little is known about their within-tissue distribution owing to the lack of nondestructive methodology. In this study, desorption electrospray ionization imaging mass spectrometry was used to investigate the within-tissue spatial distributions of specialized metabolites in tea. To overcome the negative effects of the large amount of wax on tea leaves, several sample preparation methods were compared, with a Teflon-imprint method established for tea leaves. Polyphenols are characteristic metabolites in tea leaves. Epicatechin gallate/catechin gallate, epigallocatechin gallate/gallocatechin gallate, and gallic acid were evenly distributed on both sides of the leaves, while epicatechin/catechin, epigallocatechin/gallocatechin, and assamicain A were distributed near the leaf vein. L-Theanine was mainly accumulated in tea roots. L-Theanine and valinol were distributed around the outer root cross-section. The results will advance our understanding of the precise localizations and in-vivo biosyntheses of specialized metabolites in tea.


Assuntos
Camellia sinensis/metabolismo , Polifenóis/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Camellia sinensis/química , Catequina/análogos & derivados , Catequina/análise , Ácido Gálico/análise , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo
9.
Int J Mol Sci ; 19(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126188

RESUMO

Jasmonic acid (JA) is reportedly involved in the interaction between insects and the vegetative parts of horticultural crops; less attention has, however, been paid to its involvement in the interaction between insects and the floral parts of horticultural crops. Previously, we investigated the allene oxide synthase 2 (AOS2) gene that was found to be the only JA synthesis gene upregulated in tea (Camellia sinensis) flowers exposed to insect (Thrips hawaiiensis (Morgan)) attacks. In our present study, transient expression analysis in Nicotiana benthamiana plants confirmed that CsAOS2 functioned in JA synthesis and was located in the chloroplast membrane. In contrast to tea leaves, the metabolite profiles of tea flowers were not significantly affected by 10 h JA (2.5 mM) treatment as determined using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry, and gas chromatography-mass spectrometry. Moreover, JA treatment did not significantly influence ethylene formation in tea flowers. These results suggest that JA in tea flowers may have different functions from JA in tea leaves and other flowers.


Assuntos
Camellia sinensis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Vias Biossintéticas , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA