Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1435139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021564

RESUMO

Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.


Assuntos
Ferroptose , Nefropatias , Ferroptose/efeitos dos fármacos , Humanos , Nefropatias/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Animais , Ferro/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Terapia de Alvo Molecular
2.
Cell Death Dis ; 15(7): 481, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965216

RESUMO

Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.


Assuntos
Doenças Autoimunes , Ferroptose , Ferro , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Ferro/metabolismo , Animais , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia
3.
Semin Arthritis Rheum ; 68: 152498, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38970896

RESUMO

OBJECTIVE: This study aims to assess the effectiveness and safety of mesenchymal stem cell (MSC) transplantation in the treatment of inflammatory arthritis. METHODS: Two researchers conducted a comprehensive search of Chinese and English databases from their inception until July 2023. The literature screening and data extraction were then performed. Statistical analysis was carried out using RevMan 5.4 software. RESULTS: A total of 36 relevant RCTs, involving 2,076 participants, were ultimately included in this study. These RCTs encompassed four types of inflammatory arthritis, namely rheumatoid arthritis (RA), osteoarthritis (OA), ankylosing spondylitis (AS), and systemic sclerosis (SSc). The results demonstrated that MSC therapy exhibited improvements in the Visual Analog Scale (VAS) for pain in OA patients (bone marrow: SMD=-0.95, 95 % CI: -1.55 to -0.36, P = 0.002; umbilical cord: SMD=-2.03, 95 % CI: -2.99 to -1.07, P < 0.0001; adipose tissue: SMD=-1.26, 95 % CI: -1.99 to -0.52, P = 0.0009). Specifically, MSCs sourced from adipose tissue showed enhancements in Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain (P = 0.0001), WOMAC physical function (P = 0.001), and total WOMAC scores (P = 0.0003). As for MSC therapy in RA, AS, and SSc, the current systematic review suggests a potential therapeutic effect of MSCs on these inflammatory arthritic conditions. Safety assessments indicated that MSC therapy did not increase the incidence of adverse events. CONCLUSION: MSCs have the potential to alleviate joint pain and improve joint function in patients with inflammatory arthritis. Moreover, MSC therapy appears to be relatively safe and could be considered as a viable alternative treatment option for inflammatory arthritis.

4.
BMC Med ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475833

RESUMO

BACKGROUND: Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS: Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS: A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS: Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).

5.
Sci Rep ; 14(1): 1604, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238321

RESUMO

To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-ß signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.


Assuntos
Artrite Reumatoide , Triterpenos Pentacíclicos , Triterpenos , Camundongos , Animais , Farmacologia em Rede , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Simulação de Acoplamento Molecular , Multiômica , Proteômica , Fosfatidilinositol 3-Quinases , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética
6.
Ageing Res Rev ; 91: 102063, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37673132

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.


Assuntos
Produtos Biológicos , Ferroptose , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Substância Negra/metabolismo
7.
Arthritis Res Ther ; 25(1): 152, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608388

RESUMO

BACKGROUND: Iguratimod (IGU) reduces hypergammaglobulinemia and disease activity in pSS (primary Sjögren's syndrome) patients. However, the therapeutical mechanism of IGU for pSS remains largely unknown. This study aimed to investigate the regulation of Tfh cell differentiation by IGU in pSS patients. METHODS: We prospectively enrolled 13 pSS patients treated with IGU for 3 months and examined circulating T cell and B cell subsets by flow cytometry. We measured Tfh cell differentiation treated by IGU in pSS patients and healthy controls. Transcriptome analysis combined with molecular docking were employed to identify potential therapeutical targets of IGU, which were verified by Western blot and Tfh cell differentiation. RESULTS: Tfh, plasmablast, and plasma cells were suppressed by IGU treatment at 1 and 3 months. Tfh cell differentiation and function were significant inhibited by IGU in pSS patients and healthy controls in vitro. Pyruvate dehydrogenase kinase 1 (PDK1) was identified as a target of IGU during Tfh cell differentiation, and the downstream Akt phosphorylation was attenuated by IGU. Moreover, the activity of mTORC1 and phosphorylation of STAT3 were suppressed by IGU, with downregulation of BCL6 and upregulation of PRDM1. Finally, Akt activator restored IGU-suppressed Tfh cell differentiation. CONCLUSIONS: IGU suppresses Tfh cell differentiation in pSS patients through interacting with PDK1 and suppressing Akt-mTOR-STAT3 signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Síndrome de Sjogren , Humanos , Simulação de Acoplamento Molecular , Síndrome de Sjogren/tratamento farmacológico , Serina-Treonina Quinases TOR , Diferenciação Celular , Fator de Transcrição STAT3
8.
Pharmacol Res ; 195: 106842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37402434

RESUMO

OBJECTIVE: To evaluate efficacy and safety of total glucosides of paeony in the treatment of 5 types of inflammatory arthritis METHODS: Databases such as Pubmed, Cochran Library, Embase were searched to collect RCTs about TGP in the treatment of inflammatory arthritis. Then, the RCTs were assessed for risk of bias and RCT data were extracted. Finally, RevMan 5.4 was used for the meta-analysis. RESULTS: A total of 63 RCTs were finally included, involving 5293 participants and 5 types of types of inflammatory arthritis: rheumatoid arthritis (RA), ankylosing spondylitis (AS), osteoarthritis (OA), juvenile idiopathic arthritis (JIA), psoriatic arthritis. For AS, TGP may improve AS disease activity score (ASDAS), decrease erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tumor necrosis factor (TNF)- α and interleukin (IL)- 6; for RA, TGP may improve disease activity of 28 joints (DAS28), decrease ESR, CRP, rheumatoid factor (RF), TNF-α and IL-6; for psoriatic arthritis, TGP may improve psoriasis area and severity index (PASI) and decrease ESR; for OA, TGP may improve visual analogue scale (VAS) and decrease nitric oxide (NO); for JIA, TGP may increase total efficiency rate, decrease ESR, CRP and TNF-α. For safety, RCTs showed that the addition of TGP did not increase adverse events, and may even reduce adverse events. CONCLUSION: TGP may improve symptoms and inflammation levels in patients with inflammatory arthritis. However, due to the low quality and small number of RCTs, large-sample, multi-center clinical trials are still needed for revision or validation.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Paeonia , Humanos , Glucosídeos/efeitos adversos , Fator de Necrose Tumoral alfa , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico
9.
Front Immunol ; 14: 1024120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033930

RESUMO

Objective: To evaluate safety and efficacy of dietary polyphenols in the treatment of rheumatoid arthritis (RA). Methods: CNKI, Pubmed, Cochrane library, Embase were searched to collect randomized controlled trials (RCTs) of dietary polyphenols in the treatment of RA. The databases were searched from the time of their establishment to November 8nd, 2022. After 2 reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies, Meta-analysis was performed using RevMan5.4 software. Results: A total of 49 records (47 RCTs) were finally included, involving 3852 participants and 15 types of dietary polyphenols (Cinnamon extract, Cranberry extract, Crocus sativus L. extract, Curcumin, Garlic extract, Ginger extract, Hesperidin, Olive oil, Pomegranate extract, Puerarin, Quercetin, Resveratrol, Sesamin, Tea polyphenols, Total glucosides of paeony). Pomegranate extract, Resveratrol, Garlic extract, Puerarin, Hesperidin, Ginger extract, Cinnamon extract, Sesamin only involve in 1 RCT. Cranberry extract, Crocus sativus L. extract, Olive oil, Quercetin, Tea polyphenols involve in 2 RCTs. Total glucosides of paeony and Curcumin involve in more than 3 RCTs. These RCTs showed that these dietary polyphenols could improve disease activity score for 28 joints (DAS28), inflammation levels or oxidative stress levels in RA. The addition of dietary polyphenols did not increase adverse events. Conclusion: Dietary polyphenols may improve DAS28, reduce C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), and improve oxidative stress, etc. However, more RCTs are needed to verify or modify the efficacy and safety of dietary polyphenols. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022315645.


Assuntos
Artrite Reumatoide , Curcumina , Hesperidina , Humanos , Resveratrol , Azeite de Oliva , Quercetina , Ensaios Clínicos Controlados Aleatórios como Assunto , Artrite Reumatoide/tratamento farmacológico , Glucosídeos , Chá
10.
Rheumatology (Oxford) ; 62(2): 946-957, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35713502

RESUMO

OBJECTIVES: Whether naive CD4+ T cells are dysregulated and associated with the overactivation of CD4+ T cells in primary SS (pSS) remains unclear. We aimed to explore the role and underlying mechanism of naive CD4+ T cells in pSS. METHODS: We examined the activation, proliferation and differentiation of naive CD4+ T cells from pSS patients and healthy controls. Differentially expressed genes were identified using RNA sequencing, and were overexpressed or silenced to determine the gene regulating follicular helper T (Tfh) cells. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) with chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) was performed to explore the epigenetic mechanism. Naive CD4+ T cells were treated with pSS-related cytokines to explore the upstream signalling pathway. RESULTS: pSS naive CD4+ T cells had higher potentials of activation, proliferation and differentiation towards Tfh cells. Thymocyte selection-associated high mobility group box protein (TOX) was upregulated in pSS naive CD4+ T cells and promoted T cell activation and Tfh cell polarization. TOX silencing in pSS naive CD4+ T cells downregulated B cell lymphoma 6 (BCL6) expression and altered levels of multiple Tfh-associated genes. ChIP-seq analysis implied that TOX bound to the BCL6 locus, where there were accessible regions found by ATAC-seq. IFN-α induced TOX overexpression, which was attenuated by Janus kinase (JAK) and signal transducer and activator of transcription 1 (STAT1) inhibitors. CONCLUSION: Our data suggest that TOX in pSS naive CD4+ T cells is upregulated, which facilitates Tfh cell differentiation. Mechanistically, IFN-α induces TOX overexpression in naive CD4+ T cells through JAK-STAT1 signalling and TOX regulates BCL6 expression. Therefore, IFN-α-JAK-STAT1 signalling and TOX might be potential therapeutic targets in pSS.


Assuntos
Síndrome de Sjogren , Células T Auxiliares Foliculares , Humanos , Células T Auxiliares Foliculares/patologia , Linfócitos T Auxiliares-Indutores/metabolismo , Síndrome de Sjogren/metabolismo , Diferenciação Celular/genética , Linfócitos T CD4-Positivos
11.
Front Immunol ; 13: 944387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248877

RESUMO

Objective: To evaluate the safety and efficacy of fecal microbiota transplantation for autoimmune diseases and autoinflammatory diseases. Methods: Relevant literature was retrieved from the PubMed database, Embase database, Cochrane Library database, etc. The search period is from the establishment of the database to January 2022. The outcomes include clinical symptoms, improvement in biochemistry, improvement in intestinal microbiota, improvement in the immune system, and adverse events. Literature screening and data extraction were independently carried out by two researchers according to the inclusion and exclusion criteria, and RevMan 5.3 software was used for statistics and analysis. Results: Overall, a total of 14 randomized controlled trials (RCTs) involving six types of autoimmune diseases were included. The results showed the following. 1) Type 1 diabetes mellitus (T1DM): compared with the autologous fecal microbiota transplantation (FMT) group (control group), the fasting plasma C peptide in the allogenic FMT group at 12 months was lower. 2) Systemic sclerosis: at week 4, compared with one of two placebo controls, three patients in the experimental group reported a major improvement in fecal incontinence. 3) Ulcerative colitis, pediatric ulcerative colitis, and Crohn's disease: FMT may increase clinical remission, clinical response, and endoscopic remission for patients with ulcerative colitis and increase clinical remission for patients with Crohn's disease. 4) Psoriatic arthritis: there was no difference in the ratio of ACR20 between the two groups. Conclusion: Based on current evidence, the application of FMT in the treatment of autoimmune diseases is effective and relatively safe, and it is expected to be used as a method to induce remission of active autoimmune diseases. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235055, identifier CRD42021235055.


Assuntos
Doenças Autoimunes , Colite Ulcerativa , Doença de Crohn , Doenças Hereditárias Autoinflamatórias , Doenças Autoimunes/etiologia , Doenças Autoimunes/terapia , Peptídeo C , Criança , Colite Ulcerativa/terapia , Doença de Crohn/etiologia , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Doenças Hereditárias Autoinflamatórias/etiologia , Humanos
12.
Front Immunol ; 13: 949746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159792

RESUMO

Background: Dietary polyphenol treatment of non-alcoholic fatty liver disease (NAFLD) is a novel direction, and the existing clinical studies have little effective evidence for its therapeutic effect, and some studies have inconsistent results. The effectiveness of dietary polyphenols in the treatment of NAFLD is still controversial. The aim of this study was to evaluate the therapeutic efficacy of oral dietary polyphenols in patients with NAFLD. Methods: The literature (both Chinese and English) published before 30 April 2022 in PubMed, Cochrane, Medline, CNKI, and other databases on the treatment of NAFLD with dietary polyphenols was searched. Manual screening, quality assessment, and data extraction of search results were conducted strictly according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the meta-analysis. Results: The RCTs included in this study involved dietary supplementation with eight polyphenols (curcumin, resveratrol, naringenin, anthocyanin, hesperidin, catechin, silymarin, and genistein) and 2,173 participants. This systematic review and meta-analysis found that 1) curcumin may decrease body mass index (BMI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Triglycerides (TG) total cholesterol (TC), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) compared to placebo; and curcumin does not increase the occurrence of adverse events. 2) Although the meta-analysis results of all randomized controlled trials (RCTs) did not reveal significant positive changes, individual RCTs showed meaningful results. 3) Naringenin significantly decreased the percentage of NAFLD grade, TG, TC, and low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) but had no significant effect on AST and ALT, and it is a safe supplementation. 4) Only one team presents a protocol about anthocyanin (from Cornus mas L. fruit extract) in the treatment of NAFLD. 5) Hesperidin may decrease BMI, AST, ALT, TG, TC, HOMA-IR, and so on. 6) Catechin may decrease BMI, HOMA-IR, and TG level, and it was well tolerated by the patients. 7) Silymarin was effective in improving ALT and AST and reducing hepatic fat accumulation and liver stiffness in NAFLD patients. Conclusion: Based on current evidence, curcumin can reduce BMI, TG, TC, liver enzymes, and insulin resistance; catechin can reduce BMI, insulin resistance, and TG effectively; silymarin can reduce liver enzymes. For resveratrol, naringenin, anthocyanin, hesperidin, and catechin, more RCTs are needed to further evaluate their efficacy and safety.


Assuntos
Catequina , Curcumina , Hesperidina , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Silimarina , Alanina Transaminase , Antocianinas/uso terapêutico , Aspartato Aminotransferases , HDL-Colesterol , LDL-Colesterol , Curcumina/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Genisteína/uso terapêutico , Hesperidina/uso terapêutico , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Polifenóis/efeitos adversos , Resveratrol/uso terapêutico , Silimarina/uso terapêutico , Triglicerídeos
13.
Biomed Pharmacother ; 154: 113611, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081288

RESUMO

Cerebrovascular diseases, such as ischemic stroke, pose serious medical challenges worldwide due to their high morbidity and mortality and limitations in clinical treatment strategies. Studies have shown that reactive oxygen species (ROS)-mediated inflammation, excitotoxicity, and programmed cell death of each neurovascular unit during post-stroke hypoxia and reperfusion play an important role in the pathological cascade. Ferroptosis, a programmed cell death characterized by iron-regulated accumulation of lipid peroxidation, is caused by abnormal metabolism of lipids, glutathione (GSH), and iron, and can accelerate acute central nervous system injury. Recent studies have gradually uncovered the pathological process of ferroptosis in the neurovascular unit of acute stroke. Some drugs such as iron chelators, ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) can protect nerves after neurovascular unit injury in acute stroke by inhibiting ferroptosis. In addition, combined with our previous studies on ferroptosis mediated by natural compounds in ischemic stroke, this review summarized the progress in the regulation mechanism of natural chemical components and herbal chemical components on ferroptosis in recent years, in order to provide reference information for future research on ferroptosis and lead compounds for the development of ferroptosis inhibitors.


Assuntos
Ferroptose , AVC Isquêmico , Cicloexilaminas , Glutationa/metabolismo , Humanos , Ferro/metabolismo , AVC Isquêmico/tratamento farmacológico , Peroxidação de Lipídeos , Estresse Oxidativo , Fenilenodiaminas , Quinoxalinas , Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro
14.
Front Immunol ; 13: 896476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979355

RESUMO

Objective: To evaluate the randomized controlled trials (RCTs) of Curcumin and Curcuma longa Extract in the treatment of autoimmune diseases. Methods: Databases such as Embase, Web of Science, PubMed and The Cochrane Library were searched from the database establishment to February 2022 to collect RCTs of Curcumin and Curcuma longa Extract in the treatment of autoimmune diseases. Then the literature was screened and the data were extracted. Meta-analysis was performed using RevMan 5.3 software. Results: A total of 34 records were included, involving 31 RCTs and 10 types of autoimmune disease. Among them, ankylosing spondylitis (AS) involves one RCT, Behcet 's disease (BD) involves one RCT, Crohn 's disease involves two RCTs, multiple sclerosis (MS) involves two RCTs, oral lichen planus involves six RCTs, psoriasis involves two RCTs, rheumatoid arthritis (RA) involves five RCTs, systemic lupus erythematosus (SLE) involves two RCTs, arteritis involves one RCT, ulcerative colitis (UC) involves nine RCTs. Among them, most of the RCTs of ulcerative colitis (UC), oral lichen planus, RA showed that curcumin and curcumin extracts improved clinical or laboratory results. Crohn ' s disease, MS, SLE, psoriasis included two RCTs; they all showed improvements (at least one RCT reported improvements in clinical outcomes). AS, BD and arteritis included only one RCT, and the clinical results showed improvement. However, due to the small number of RCTs and the small number of patients involved in each disease, there is still a need for more high-quality RCTs. Conclusion: Curcumin and Curcuma longa Extract had good clinical efficacy in the treatment of Psoriasis, UC and RA, so Curcumin and Curcuma longa Extract could be used in the treatment of the above diseases in the future. The results of Meta-analysis showed that Curcumin and Curcuma longa Extract did not show efficacy in the treatment of oral lichen planus, while Takayasu arteritis, SLE, MS, AS, BD and CD did not report sufficient clinical data for meta-analysis. Therefore, large-sample, multi-center clinical trials are still needed for revision or validation.


Assuntos
Arterite , Artrite Reumatoide , Colite Ulcerativa , Doença de Crohn , Curcumina , Líquen Plano Bucal , Lúpus Eritematoso Sistêmico , Psoríase , Espondilite Anquilosante , Artrite Reumatoide/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Curcuma , Curcumina/uso terapêutico , Humanos , Líquen Plano Bucal/tratamento farmacológico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Extratos Vegetais , Psoríase/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Espondilite Anquilosante/tratamento farmacológico
15.
Stem Cells Int ; 2022: 9463314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371265

RESUMO

Objective: To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods: The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results: A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion: MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.

16.
Front Immunol ; 13: 1047550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36818470

RESUMO

Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity, inflammation, and oxidative stress play important roles in various complex mechanisms of IS. In particular, the early proinflammatory response resulting from the overactivation of resident microglia and the infiltration of circulating monocytes and macrophages in the brain after cerebral ischemia leads to secondary brain injury. Microglia are innate immune cells in the brain that constantly monitor the brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce dual effects of neurotoxicity and neuroprotection, and the balance of the two effects determines the fate of damaged neurons. The activation of microglia is defined as the classical activation (M1 type) or alternative activation (M2 type). M1 type microglia secrete pro-inflammatory cytokines and neurotoxic mediators to exacerbate neuronal damage, while M2 type microglia promote a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial activation to minimize damage and maximize protection has important therapeutic value. This review focuses on the interaction between M1/M2 microglia and other immune cells involved in the regulation of IS phenotypic characteristics, and the mechanism of natural plant components regulating microglia after IS, providing novel candidate drugs for regulating microglial balance and IS drug development.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Microglia , Isquemia Encefálica/complicações , Inflamação/complicações , Macrófagos
17.
Oxid Med Cell Longev ; 2020: 6072380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082911

RESUMO

BACKGROUND: Hedysarum multijugum Maxim.-Chuanxiong rhizoma compound (HCC) is a common herbal formula modified from Buyang Huanwu decoction. Clinical trials have demonstrated its therapeutic potential for ischemic stroke (IS). However, the mechanism of HCC remains unclear. METHODS: The HCC's components were collected from the TCMSP database and TCM@Taiwan database. After that, the HCC's compound targets were predicted by PharmMapper. The IS-related genes were obtained from GeneCards, and OMIM and the protein-protein interaction (PPI) data of HCC's targets and IS genes were obtained from the String database. After that, the DAVID platform was applied for Gene Ontology (GO) enrichment analysis and pathway enrichment analysis and the Cytoscape 3.7.2 was utilized to construct and analyze the networks. Finally, a series of animal experiments were carried out to validate the prediction results of network pharmacology. The expressions of GRP78, p-PERK, and CHOP proteins and mRNAs in different time periods after HCC intervention were detected by Western blot, immunohistochemistry, and RT-qPCR. RESULTS: A total of 440 potential targets and 388 IS genes were obtained. The results of HCC-IS PPI network analysis showed that HCC may regulate IS-related targets (such as ALB, AKT1, MMP9, IGF1, and CASP3), biological processes (such as endoplasmic reticulum stress, inflammation modules, hypoxia modules, regulation of neuronal apoptosis and proliferation, and angiogenesis), and signaling pathways (such as PI3K-Akt, FoxO, TNF, HIF-1, and Rap1 signaling). The animal experiments showed that HCC can improve the neurobehavioral scores and protect the neurons of IS rats (P < 0.05). HCC inhibited the expression of p-PERK in the PERK pathway from 12 h after surgery, significantly promoted the expression of GRP78 protein, and inhibited the expression of CHOP protein after surgery, especially at 24 h after surgery (P < 0.05). The results of RT-qPCR showed that HCC can significantly reduce the expression of CHOP mRNA in the neurons in the CA1 region of the hippocampus 72 h after MCAO (P < 0.05). CONCLUSION: HCC may achieve a role in the treatment of IS by intervening in a series of targets, signaling pathways, and biological processes such as inflammation, oxidative stress, endoplasmic reticulum stress, and angiogenesis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Bases de Dados Factuais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hipocampo/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
18.
Front Pharmacol ; 11: 825, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595497

RESUMO

BACKGROUND: Xihuang Pill (XHP) is mainly used to treat "Ru Yan (breast cancer)". Evidence-based medical evidence and showed that XHP improves the efficacy of chemotherapy and reduced chemotherapy-induced toxicity in breast cancer patients. However, the mechanism of XHP against breast cancer is not clear. METHODS: The effect of XHP extract on cell half-inhibitory concentration (IC50) and cell viability of MD-MB-231 cells was detected by CCK-8 method. The cell inhibition rate of MDA-MB-453 cells were detected by MTT method. Apoptosis was detected by flow cytometry, cell transfer ability was detected by Transwell method, and cell proliferation ability was detected by colony formation assay. The expression of Notch1, ß-catenin and c-myc mRNA in MDA-MB-453 cells were detected by real-time fluorescence quantitative PCR. Then, chemical informatics and transcriptomics methodology was utilized to predict the potential compounds and targets of XHP, and collect triple negative breast cancer (TNBC) genes and the data of Olibanum and ß-boswellic acid intervention MD-MB-231 cells (from GSE102891). The cytoscape software was utilized to undergo network construction and network analysis. Finally, the data from the network analysis was imported into the DAVID database for enrichment analysis of signaling pathways and biological processes. RESULTS: The IC50 was 15.08 g/L (for MD-MB-231 cells). After interfering with MD-MB-231 cells with 15.08 g/L XHP extract for 72 h, compared with the control group, the cell viability, migration and proliferation was significantly decreased, while early apoptosis and late apoptosis were significantly increased (P < 0.01). After interfering with MDA-MB-453 cells with 6 g/L XHP extract for 72 h, compared with the control group, the cell inhibition and apoptosis rate increased, while the expression of Notch1, ß-catenin and c-myc mRNA decreased. (P < 0.05). The chemical informatics and transcriptomics analysis showed that four networks were constructed and analyzed: (1) potential compounds-potential targets network of XHP; (2) XHP-TNBC PPI network; (3) DEGs PPI network of Olibanum-treated MD-MB 231 cells; (4) DEGs PPI network of ß-boswellic acid -treated MD-MB 231 cells. Several anti-TNBC biological processes, signaling pathways, targets and so on were obtained. CONCLUSION: XHP may exert anti-TNBC effects through regulating biological processes, signaling pathways, targets found in this study.

19.
Sci Rep ; 9(1): 18420, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804513

RESUMO

Resveratrol and quercetin have effects on polycystic ovary syndrome (PCOS). Hence, resveratrol combined with quercetin may have better effects on it. However, because of the limitations in animal and human experiments, the pharmacological and molecular mechanism of quercetin-resveratrol combination (QRC) remains to be clarified. In this research, a systematic pharmacological approach comprising multiple compound target collection, multiple potential target prediction, and network analysis was used for comparing the characteristic of resveratrol, quercetin and QRC, and exploring the mechanism of QRC. After that, four networks were constructed and analyzed: (1) compound-compound target network; (2) compound-potential target network; (3) QRC-PCOS PPI network; (4) QRC-PCOS-other human proteins (protein-protein interaction) PPI network. Through GO and pathway enrichment analysis, it can be found that three compounds focus on different biological processes and pathways; and it seems that QRC combines the characteristics of resveratrol and quercetin. The in-depth study of QRC further showed  more PCOS-related biological processes and pathways. Hence, this research not only offers clues to the researcher who is interested in comparing the differences among resveratrol, quercetin and QRC, but also provides hints for the researcher who wants to explore QRC's various synergies and its pharmacological and molecular mechanism.


Assuntos
Antioxidantes/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Quercetina/farmacologia , Resveratrol/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Mapeamento de Interação de Proteínas , Transdução de Sinais
20.
Biomed Pharmacother ; 118: 109253, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545288

RESUMO

OBJECTIVE: To investigate the regulation mechanism of baicalin on triple negative breast cancer (TNBC)'s biological network by a systematic biological strategy and cytology experiment. METHODS: A systematic biological methodology is utilized to predict the potential targets of baicalin, collect the genes of TNBC, and analyze the TNBC and baicalin's network. After the systematic biological analysis is performed, the cytology experiment, real-time quantitative PCR (qPCR) is used to validate the key biological processes and signaling pathways. RESULTS: After systematic biological analysis, two networks were constructed and analyzed: (1) TNBC network; (2) Baicalin-TNBC protein-protein interaction (PPI) network. Several TNBC-related, treatment-related targets, clusters, signaling pathways and biological processes were found. Cytology experiment shows that baicalin can inhibit the proliferation, migration and invasion of breast cancer MDA-MB-231 cells in vitro (P < 0.05). The results of qPCR showed that baicalin increase the expression of E-cadherin mRNA, and decrease the expression of vimentin, ß-catenin, c-Myc and MMP-7 mRNA in LPS-induced breast cancer MDA-MB-231 cells (P < 0.05). CONCLUSION: Baicalin may achieve anti-tumor effects through regulating the targets, biological processes and pathways found in this research.


Assuntos
Flavonoides/uso terapêutico , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Humanos , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Invasividade Neoplásica , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vimentina/genética , Vimentina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA