Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 170: 116098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154276

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD), such as severe colitis, are associated with the development of lung inflammation and tissue damage. Pueraria lobata (P. lobata) plays an essential role in controlling cytokines. However, the exact mechanism of the inflammation response is still unknown. PURPOSE: To investigate the effects of the P. lobata-derived exosomes-like nanovesicles (PLDENs) on colitis and their role in the lung inflammatory response. METHODS: In this study, we investigated the effects of PLDENs on the dextran sulfate sodium (DSS)-induced colitis and explored the mechanisms by forming the gut-lung axis. PLDENs were characterized by mass spectrometry-based proteomic analysis. RESULTS: The results showed that PLDENs had significant preventive effects in DSS-induced colitis and pathological changes in colons in a dose-dependent manner. Simultaneously, the treatment of PLDENs could effectively reduce inflammatory changes in the lung. PLDENs could selectively regulate the composition of gut microbiota. CONCLUSION: These data suggested that the treatment of PLDENs could 'attenuate DSS-induced colitis and lung inflammation, providing an efficacious supplement for reducing co-morbidities in IBD patients.


Assuntos
Colite , Exossomos , Doenças Inflamatórias Intestinais , Pneumonia , Pueraria , Humanos , Animais , Camundongos , Sulfato de Dextrana/toxicidade , Exossomos/patologia , Proteômica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Macrófagos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Colo/patologia
2.
Front Cell Dev Biol ; 9: 662791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095130

RESUMO

Cancer has become the leading cause of death in recent years. As great advances in medical treatment, emerging therapies of various cancers have been developed. Current treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and targeted therapy. Aptamers are synthetic ssDNA or RNA. They can bind tightly to target molecules due to their unique tertiary structure. It is easy for aptamers to be screened, synthesized, programmed, and chemically modified. Aptamers are emerging targeted drugs that hold great potentials, called therapeutic aptamers. There are few types of therapeutic aptamers that have already been approved by the US Food and Drug Administration (FDA) for disease treatment. Now more and more therapeutic aptamers are in the stage of preclinical research or clinical trials. This review summarized the screening and development of therapeutic aptamers against different types of cancer cells.

3.
Transl Cancer Res ; 10(5): 2354-2367, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35116551

RESUMO

BACKGROUND: Immune-related genes (IRGs) are highly relevant to the progression and prognosis of esophageal squamous cell carcinoma (ESCC). A prognostic signature could be reliable in stratifying ESCC patients according to the risk score, which may help manage systematic treatments. In this study, a systematic and reliable immune signature was developed to estimate the prognostic stratification in ESCC. METHODS: Ribonucleic acid (RNA) expression data of 79 ESCC samples from the Cancer Genome Atlas (TCGA) database and 269 normal esophageal mucosal samples from the Genotype-Tissue Expression (GTEx) project database were downloaded from the University of California, Santa Cruz (UCSC) website to form a TCGA-GTEx dataset. First, we screened differentially expressed genes (DEGs) and then filtered IRGs based on the Immunology Database and Analysis Portal (ImmPort) database to obtain immune-related DEGs (IRDEGs). Next, a novel prognostic signature based on IRDEGs was developed using multivariable Cox analysis. Immune infiltration status was evaluated via single-sample gene set enrichment analysis (ssGSEA). ESCC tissues were grouped into three clusters in terms of immune infiltration (Immunity-L, Immunity-M, and Immunity-H) by applying an unsupervised hierarchical clustering algorithm. Finally, the samples were divided into high- and low-risk groups using the median of the risk score scores for GSEA pathway enrichment analysis in the three clusters. RESULTS: The prognostic signature based on IRDEGs (FCER1G, ISG20, and EGFR) performed moderately in prognostic predictions, with a concordance index (C-index) value of 0.73 [95% (confidence interval) CI: 0.63-0.84, P=2.02E-05] and an area under the curve (AUC) value of 0.817. The xenobiotic metabolism pathway was significantly enriched and up-regulated both in the high-risk group of the immunity-M and immunity-H clusters. CONCLUSIONS: The novel immune-related prognostic signature we constructed has a good prognostic, predictive ability and can be used as an independent prognostic indicator. Our study provides clinicians with a quantitative tool to predict the probability of individual survival time and helps clinicians select targets for immunotherapies and individualized treatment strategies for ESCC patients.

4.
Transl Cancer Res ; 10(8): 3811-3828, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35116680

RESUMO

BACKGROUND: The therapeutic response and prognosis of patients with non-small cell lung carcinoma (NSCLC) are widely related to immunity. To improve the prognosis of patients and provide reliable information to guide appropriate personalized treatment strategies, it is necessary to identify reliable prognostic or predictive indicators closely related to tumor phenotype and immune traits in NSCLC. METHODS: Based on The Cancer Genome Atlas (TCGA)-NSCLC mRNA expression profile data, a novel approach combining differential gene expression analysis, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network analysis (WGCNA) was used to screen hub genes. Subsequently, the regulator of hemoglobinization and erythroid cell expansion (RHEX) was identified as a key gene using the log-rank test and confirmed in the ArrayExpress database. The relationship between RHEX and clinicopathological parameters was analyzed using the Wilcoxon rank-sum test. More importantly, through gene set enrichment analysis (GSEA) and cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithms, and with reference to the Tumor IMmune Estimation Resource (TIMER) database, we explored the relevant pathways of RHEX and its relationship with tumor-infiltrating immune cells (TICs). Finally, we depicted the association between RHEX and immunomodulators in the TCGA and a web portal TISIDB. RESULTS: The RHEX mRNA expression levels in tumor tissues were lower than those in normal tissues and declined with the progression of NSCLC. Meanwhile, RHEX overexpression was associated with high immune infiltration levels and a favorable clinical prognosis. RHEX may participate in tumor microenvironment (TME) regulation through multiple tumor-immune related pathways, especially the JAK-STAT signaling pathway. Furthermore, RHEX expression affected the infiltrating abundance of multiple TICs and positively correlated with most of the immunomodulators in NSCLC. CONCLUSIONS: Our study is the first to propose that RHEX is an immune-related gene with prognostic value in NSCLC and reveals the underlying mechanism between RHEX and tumor-immune system interactions. These results ultimately provide guidance for prognosis and immunotherapy for NSCLC patients.

5.
PLoS One ; 13(1): e0189927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293540

RESUMO

Biotrickling filters (BTFs) are becoming very potential means to purify waste gases containing multiple VOC components, but the removal of the waste gases by BTF has been a major challenge due to the extremely complicated interactions among the components. Four biotrickling filters packed with polyurethane foam were employed to identify the interactions among four aromatic compounds (benzene, toluene, xylene and styrene). The elimination capacities obtained at 90% of removal efficiency for individual toluene, styrene and xylene were 297.02, 225.27 and 180.75 g/m3h, respectively. No obvious removal for benzene was observed at the inlet loading rates ranging from 20 to 450 g/m3h. The total elimination capacities for binary gases significantly decreased in all biotrickling filters. However, the removal of benzene was enhanced in the presence of other gases. The removal capacities of ternary and quaternary gases were further largely lowered. High-throughput sequencing results revealed that microbial communities changed greatly with the composition of gases, from which we found that: all samples were dominated either by the genus Achromobacter or the Burkholderia. Different gaseous combination enriched or inhibited some microbial species. Group I includes samples of BTFs treating single and binary gases and was dominated by the genus Achromobacter, with little Burkholderia inside. Group II includes the rest of the samples taken from BTFs domesticated with ternary and quaternary gases, and was dominated by the genus Burkholderia, with little Achromobacter detected. These genera were highly associated with the biodegradation of benzene series in BTFs.


Assuntos
Poluentes Ambientais/isolamento & purificação , Hidrocarbonetos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA