Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172689

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignant malignancy affecting the gastrointestinal tract that is usually treated clinically with chemotherapeutic agents, whereas chemotherapeutic agents can cause severe gastrointestinal toxicity, which brings great pain to patients. Therefore, finding effective adjuvant agents for chemotherapy is crucial. METHODS: In this study, a CRC mouse model was successfully constructed using AOM/DSS, and the treatment was carried out by probiotic Bifidobacterium longum SX-1326 (B. longum SX-1326) in combination with irinotecan. Combining with various techniques of modern biomedical research, such as Hematoxylin and Eosin (H&E), Immunohistochemistry (IHC), Western blotting and 16S rDNA sequencing, we intend to elucidate the effect and mechanism of B. longum SX-1326 in improving the anticancer efficacy and reducing the side effects on the different levels of molecules, animals, and bacteria. RESULTS: Our results showed that B. longum SX-1326 enhanced the expression of Cleaved Caspase-3 (M vs. U = p < 0.01) and down-regulated the expression level of B-cell lymphoma-2 (Bcl-2) through up-regulation of the p53 signaling pathway in CRC mice, which resulted in an adjuvant effect on the treatment of CRC with irinotecan. Moreover, B. longum SX-1326 was also able to regulate the gut-brain-axis (GBA) by restoring damaged enterochromaffin cells, reducing the release of 5-hydroxytryptamine (5-HT) in brain tissue (I vs. U = 89.26 vs. 75.03, p < 0.05), and further alleviating the adverse effects of nausea and vomiting. In addition, B. longum SX-1326 reversed dysbiosis in CRC model mice by increasing the levels of Dehalobacterium, Ruminnococcus, and Mucispirillum. And further alleviated colorectal inflammation by downregulating the TLR4/MyD88/NF-κB signaling pathway. CONCLUSIONS: In conclusion, our work reveals that B. longum SX-1326 has a favorable effect in adjuvant irinotecan for CRC and amelioration of post-chemotherapy side effects, and also provides the theoretical basis and data for finding a safe and efficient chemotherapeutic adjuvant.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Eixo Encéfalo-Intestino , Irinotecano/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/farmacologia
2.
Gut Microbes ; 15(1): 2221093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37282604

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer, which remains a threat to female health at all ages. Hypotheses for EOC development include the continuous presence of inflammation, in which microbiota and inflammatory cytokines participate in cancer-related signaling pathway activation. Hedgehog (Hh) signaling is prominent for EOC progression, and interacts with inflammation response related to gut microbiota (GM). However, the precise roles of GM during this process are unknown. Here, we showed that the GM from patients with EOC differed from that of healthy women and had GM dysbiosis. We found that EOC modeling may lead to GM changes in mice, and it restored after the administration of GM from healthy controls, while GM from patients with EOC further exacerbated GM dysbiosis. Furthermore, we found that GM from EOC markedly promoted tumor progression and activated Hh signaling; meanwhile, it increased the extent of inflammation and activated NF-κB signaling, but GM from healthy controls improved them. Our results demonstrate how GM dysbiosis promoted EOC progression by activating Hh signaling mediated by TLR4/NF-κB signaling. We anticipate our assay to be a new thought for exploring the role of GM in EOC development. Furthermore, improving GM dysbiosis is a novel therapeutic approach for delaying EOC development.


Assuntos
Microbioma Gastrointestinal , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Proteínas Hedgehog/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Disbiose , Linhagem Celular Tumoral , Transdução de Sinais/fisiologia , Inflamação/patologia
4.
Nat Mater ; 21(8): 932-938, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773491

RESUMO

Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l-1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l-1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C-H bond in CH4 (439 kJ mol-1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal-organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat-1 h-1 (versus 5.05 mmol gcat-1 h-1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe-OH···CH4] intermediate, thus lowering the barrier for C-H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C-H bond activation in CH4 to drive the direct photosynthesis of CH3OH.


Assuntos
Metano , Metanol , Metano/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA