Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nanomaterials (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242082

RESUMO

Titanium dioxide (TiO2) has garnered significant attention among various photocatalysts, whereas its photocatalytic activity is limited by its wide bandgap and inefficient charge separation, making the exploration of new strategies to improve its photocatalytic performance increasingly important. Here, we report the synthesis of Ag/P25 nanocomposites through a one-step gamma-ray radiation method using AgNO3 and commercial TiO2 (Degussa P25). The resulting products were characterized by powder X-ray diffraction, UV-Vis diffused reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The effect of free radical scavengers, feed ratios of Ag/P25, and dose rates on the photocatalytic activity of the Ag/P25 nanocomposites were systematically investigated using rhodamine B under Xenon light irradiation. The results showed that the Ag/P25 photocatalyst synthesized with a feed ratio of 2.5 wt% and isopropyl alcohol as the free radical scavenger at a dose rate of 130 Gy/min exhibited outstanding photocatalytic activity, with a reaction rate constant of 0.0674 min-1, much higher than that of P25. Additionally, we found that the particle size of Ag could be effectively controlled by changing the dose rate, and the Ag/P25 nanocomposites doped with smaller size of Ag nanoparticles performed higher photocatalytic activities. The synthesis strategy presented in this study offers new insight into the future development of highly efficient photocatalysts using radiation techniques.

2.
Nat Commun ; 13(1): 3728, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764645

RESUMO

Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB. MYCN amplification leads to glycerolipid accumulation by promoting fatty acid (FA) uptake and biosynthesis. We found that cells expressing amplified MYCN depend highly on FA uptake for survival. Mechanistically, MYCN directly upregulates FA transport protein 2 (FATP2), encoded by SLC27A2. Genetic depletion of SLC27A2 impairs NB survival, and pharmacological SLC27A2 inhibition selectively suppresses tumor growth, prolongs animal survival, and exerts synergistic anti-tumor effects when combined with conventional chemotherapies in multiple preclinical NB models. This study identifies FA uptake as a critical metabolic dependency for MYCN-amplified tumors. Inhibiting FA uptake is an effective approach for improving current treatment regimens.


Assuntos
Ácidos Graxos , Neuroblastoma , Animais , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo
3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631384

RESUMO

Gemcitabine is a chemotherapeutic used clinically to treat a variety of cancers. However, because it lacks tumor cell specificity, gemcitabine may cause off-target cytotoxicity and adversely impact patients. To impart cancer cell specificity to gemcitabine and improve its therapeutic efficacy, we synthesized a unique aptamer-drug conjugate that carries a high gemcitabine payload (three molecules) via a dendrimer structure and enzymatically cleavable linkers for controlled intracellular drug release. First, linker-gemcitabinedendrimer-linker-gemcitabine products were produced, which had significantly lower cytotoxicity than an equimolar amount of free drug. Biochemical analysis revealed that lysosomal cathepsin B protease rapidly cleaved the dendritic linkers and released the conjugated gemcitabine as a free drug. Subsequently, the dendrimer-linker-gemcitabine was coupled with a cell-specific aptamer to form aptamer-gemcitabine conjugates. Functional assays confirmed that, under aptamer guidance, aptamer-gemcitabine conjugates were selectively bound to and then internalized by triple-negative breast cancer cells. Cellular therapy studies indicated that the aptamer-gemcitabine conjugates potentiated cytotoxic activity to targeted cancer cells but did not affect off-target control cells. Our study demonstrates a novel approach to aptamer-mediated targeted drug delivery that combines a high drug payload and an enzymatically controlled drug release switch to achieve higher therapeutic efficacy and fewer off-target effects relative to free-drug chemotherapy.

4.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326720

RESUMO

Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells limits the development of targeted therapies by antibody technology. Therefore, we investigated an alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells, we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted TNBC therapy using the PDGC21T aptamer as a targeting ligand.

5.
Mol Ther ; 30(6): 2242-2256, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143958

RESUMO

Triple-negative breast cancer is an aggressive subtype of breast cancer that is primarily treated using systemic chemotherapy due to the lack of a specific cell surface marker for drug delivery. Cancer cell-specific aptamer-mediated drug delivery is a promising targeted chemotherapy for marker-unknown cancers. Using a poorly differentiated carcinoma cell-specific DNA aptamer (PDGC21T), we formed a self-assembling circinate DNA nanoparticle (Apt21TNP) that binds triple-negative breast cancer cells. Using our previously designed pH-sensitive dendrimer-conjugated doxorubicin (DDOX) as the payload, we found that each nanoparticle loaded 30 doxorubicin molecules to form an Apt21TNP-DDOX nanomedicine that is stable in human plasma. Upon cell binding, Apt21TNP-DDOX is internalized by triple-negative breast cancer cells through the macropinocytosis pathway. Once inside cells, the low pH microenvironment in lysosomes induces doxorubicin drug payload release from Apt21TNP-DDOX. Our in vitro studies demonstrate that Apt21TNP-DDOX can preferentially bind triple-negative breast cancer cells to induce cell death. Furthermore, we show that Apt21TNP-DDOX can accumulate in subcutaneous MDA-MB-231 tumors in mice following systemic administration to reduce tumor burden, minimize side effects, and improve animal survival. Together, our results demonstrate that Apt21TNP-mediated doxorubicin delivery is a potent, targeted chemotherapy for triple-negative breast cancer that may alleviate side effects in patients.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Camundongos , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
6.
Biomaterials ; 280: 121259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801254

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer comprised of cells that lack expression of targetable biomarkers. Nucleic acid aptamers are a group of molecular ligands that can specifically bind to their targets with high affinity. The ssDNA aptamer PDGC21-T recognizes poorly differentiated cancer cells and tumor tissues through an unidentified cell surface target(s). Because TNBC tumor cells are poorly differentiated, the aptamer PDGC21-T is a promising therapeutic candidate to target TNBC tumor cells. In vitro study revealed that synthetic aptamer probes selectively targeted TNBC cell lines. To assess aptamer immunotherapeutic targeting capability, we generated aptamer-engineered NK cells (ApEn-NK) using aptamer probes as a targeting ligand and NK cells as a therapeutic agent. Cell clustering formation assays revealed that ApEn-NK bound both suspended and adherent TNBC cells with high affinity. In a functional study, ApEn-NK treatment triggered apoptosis and death of cultured TNBC cells. Finally, systemic administration of ApEn-NK in mice harboring TNBC xenografts resulted in significant inhibition of lung metastasis relative to parental NK cell treatments. Unlike chemotherapy, ApEn-NK treatment did not affect body weight in treated mice. We demonstrate a novel approach for targeted TNBC immunotherapy.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
Pharmaceutics ; 13(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34452182

RESUMO

Doxorubicin (DOX) is a common anti-tumor drug that binds to DNA or RNA via non-covalent intercalation between G-C sequences. As a therapeutic agent, DOX has been used to form aptamer-drug conjugates for targeted cancer therapy in vitro and in vivo. To improve the therapeutic potential of aptamer-DOX conjugates, we synthesized trifurcated Newkome-type monomer (TNM) structures with three DOX molecules bound through pH-sensitive hydrazone bonds to formulate TNM-DOX. The aptamer-TNM-DOX conjugate (Apt-TNM-DOX) was produced through a simple self-loading process. Chemical validation revealed that Apt-TNM-DOX stably carried high drug payloads of 15 DOX molecules per aptamer sequence. Functional characterization showed that DOX payload release from Apt-TNM-DOX was pH-dependent and occurred at pH 5.0, which reflects the microenvironment of tumor cell lysosomes. Further, Apt-TNM-DOX specifically targeted lymphoma cells without affecting off-target control cells. Aptamer-mediated cell binding resulted in the uptake of Apt-TNM-DOX into targeted cells and the release of DOX payload within cell lysosomes to inhibit growth of targeted lymphoma cells. The Apt-TNM-DOX provides a simple, non-toxic approach to develop aptamer-based targeted therapeutics and may reduce the non-specific side effects associated with traditional chemotherapy.

8.
Bioconjug Chem ; 32(6): 1139-1145, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34014641

RESUMO

Noninvasive in vivo imaging to measure the expression of EpCAM, a biomarker overexpressed in the majority of carcinoma tumors and metastatic lesions, is highly desirable for accurate tumor staging and therapy evaluation. Here, we report the use of an aptamer radiotracer to enable tumor-specific EpCAM-targeting PET imaging. Oligonucleotide aptamers are small molecular ligands that specifically bind with high affinity to their target molecules. For specific tumor imaging, an aptamer radiotracer was formulated by chelating a 64Cu isotope and DOTA-PEGylated aptamer sequence to target EpCAM. In vitro cell uptake assays demonstrated that the aptamer radiotracer specifically bound EpCAM-expressing breast cancer cells but did not react with off-target tumor cells. For in vivo tumor imaging, aptamer radiotracer was systemically administered into xenograft mice. MicroPET/CT scans revealed that the aptamer radiotracer rapidly highlighted xenograft tumors derived from MDA-MB-231 breast cancer cells (EpCAM positive) as early as 2 h postadministration with a gradually increasing tumor uptake signal that peaked at 24 h but not in lymphoma 937 tumors (EpCAM negative). In contrast, nonspecific background signals in the liver and kidneys were rapidly decreased postadministration. This proof-of-concept study demonstrates the utility of aptamer radiotracers for tumor-specific PET imaging.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Camundongos , Traçadores Radioativos
9.
J Clin Oncol ; 39(13): 1415-1425, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507803

RESUMO

PURPOSE: Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen-specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape. PATIENTS AND METHODS: We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1. Products were administered to 32 patients with Hodgkin lymphomas (n = 14) or non-Hodgkin lymphomas (n = 18) in a two-part phase I clinical trial, where the objective of the first phase was to establish the safety of targeting all five TAAs (fixed dose, 0.5 × 107 cells/m2) simultaneously and the second stage was to establish the maximum tolerated dose. Patients had received a median of three prior lines of therapy and either were at high risk for relapse (adjuvant arm, n = 17) or had chemorefractory disease (n = 15) at enrollment. RESULTS: Infusions were safe with no dose-limiting toxicities observed in either the antigen- or dose-escalation phases. Although the maximum tolerated dose was not reached, the maximum tested dose at which efficacy was observed (two infusions, 2 × 107 cells/m2) was determined as the recommended phase II dose. Of the patients with chemorefractory lymphomas, two (of seven) with Hodgkin lymphomas and four (of eight) with non-Hodgkin lymphomas achieved durable complete remissions (> 3 years). CONCLUSION: T cells targeting five TAAs and administered at doses of up to two infusions of 2 × 107 cells/m2 are well-tolerated by patients with lymphoma both as adjuvant and to treat chemorefractory lymphoma. Preliminary indicators of antilymphoma activity were seen in the chemorefractory cohort across both antigen- and dose-escalation phases.


Assuntos
Antígenos de Neoplasias/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfoma/terapia , Terapia de Salvação , Linfócitos T/transplante , Adolescente , Adulto , Idoso , Feminino , Humanos , Linfoma/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
10.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471128

RESUMO

Mycoplasma contamination of cell line cultures is a common, yet often undetected problem in research laboratories. Many of the existing techniques to detect mycoplasma contamination of cultured cells are time-consuming, expensive, and have significant drawbacks. Here, we describe a mycoplasma detection system that is useful for detecting multiple species of mycoplasma in infected cell lines. The system contains three dye-labeled detection aptamers that can specifically bind to mycoplasma-infected cells and a dye-labeled control aptamer that minimally binds to cells. With this system, mycoplasma-contaminated cells can be detected within 30 min by using a flow cytometer, fluorescence microscope, or microplate reader. Further, this system may be used to detect mycoplasma-contaminated culture medium. This study presents an novel mycoplasma detection model that is simple, rapid, inexpensive, and sensitive.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas de Cultura de Células , Mycoplasma/isolamento & purificação , Ligação Competitiva , Linhagem Celular Tumoral , Meios de Cultura , Contaminação por DNA , Citometria de Fluxo , Humanos , Mycoplasma/genética
11.
Sci Rep ; 10(1): 5078, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193476

RESUMO

Systemic anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma most commonly seen in children and young adults. The majority of pediatric ALCLs are associated with the t(2;5)(p23;q35) translocation which fuses the Anaplastic Lymphoma Kinase (ALK) gene with the Nucleophosmin (NPM) gene. The NPM-ALK fusion protein is a constitutively-active tyrosine kinase, and plays a major role in tumor pathogenesis. In an effort to advance novel diagnostic approaches and the understanding of the function of this fusion protein in cancer cells, we expressed in E. coli, purified and characterized human NPM-ALK fusion protein to be used as a standard for estimating expression levels in cultured human ALCL cells, a key tool in ALCL pathobiology research. We estimated that NPM-ALK fusion protein is expressed at substantial levels in both Karpas 299 and SU-DHL-1 cells (ca. 4-6 million molecules or 0.5-0.7 pg protein per cell; based on our in-house developed NPM-ALK ELISA; LOD of 40 pM) as compared to the ubiquitous ß-actin protein (ca. 64 million molecules or 4.5 pg per lymphocyte). We also compared NPM-ALK/ ß-actin ratios determined by ELISA to those independently determined by two-dimensional electrophoresis and showed that the two methods are in good agreement.


Assuntos
Expressão Gênica , Linfoma Anaplásico de Células Grandes/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Recombinação Genética/genética , Actinas/genética , Actinas/metabolismo , Adolescente , Linhagem Celular Tumoral , Criança , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas Tirosina Quinases/fisiologia , Translocação Genética/genética , Adulto Jovem
12.
Cancers (Basel) ; 12(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218299

RESUMO

Anaplastic large cell lymphoma (ALCL) is the most common T-cell lymphoma in children. ALCL cells characteristically express surface CD30 molecules and carry the pathogenic ALK oncogene, both of which are diagnostic biomarkers and are also potential therapeutic targets. For precision therapy, we report herein a protamine nanomedicine incorporated with oligonucleotide aptamers to selectively target lymphoma cells, a dsDNA/drug payload to efficiently kill targeted cells, and an siRNA to specifically silence ALK oncogenes. The aptamer-equipped protamine nanomedicine was simply fabricated through a non-covalent charge-force reaction. The products had uniform structure morphology under an electron microscope and a peak diameter of 103 nm by dynamic light scattering measurement. Additionally, flow cytometry analysis demonstrated that under CD30 aptamer guidance, the protamine nanomedicine specifically bound to lymphoma cells, but did not react to off-target cells in control experiments. Moreover, specific cell targeting and intracellular delivery of the nanomedicine were also validated by electron and confocal microscopy. Finally, functional studies demonstrated that, through combined cell-selective chemotherapy using a drug payload and oncogene-specific gene therapy using an siRNA, the protamine nanomedicine effectively killed lymphoma cells with little toxicity to off-target cells, indicating its potential for precision therapy.

13.
ACS Sens ; 4(8): 2028-2038, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31403764

RESUMO

Mycoplasmas are unique cell wall-free bacteria. Because they lack a cell wall and have resistance to ß-lactam antibiotics, mycoplasma is the major pathogen that infects cultured cells in research laboratories. For rapid detection of mycoplasma-infected cells, we developed an ssDNA aptamer sequence composed of 40 nucleotides. Flow cytometry analysis showed that the synthetic aptamer probe selectively targeted mycoplasma-infected culture cells with high specificity identical to commercially available PCR-based assays. Additionally, fluorescent microscopy studies revealed that the aptamer probe rapidly stained mycoplasma-infected cells with higher sensitivity compared to Hoechst dye-mediated cellular DNA content stains. Moreover, confocal microscopy studies of trypsin-treated cells validated that the aptamer probes selectively targeted mycoplasma components on the surface of infected cells. Finally, preclinical studies of peripheral blood cells demonstrated that the aptamer probe was able to detect in vitro mycoplasma infection of primary lymphocytes. Taken together, these findings indicate that the aptamer probe will not only allow rapid detection of mycoplasma-infected culture cells for research purposes but also provide a simple method to monitor mycoplasma infection in primary cell products for clinical use.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Sondas de DNA/química , DNA de Cadeia Simples/química , Linfócitos/microbiologia , Infecções por Mycoplasma/diagnóstico , Humanos , Células Tumorais Cultivadas
14.
Small ; 15(22): e1900903, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31026116

RESUMO

Natural killer (NK) cells are a key component of the innate immune system as they can attack cancer cells without prior sensitization. However, due to lack of cell-specific receptors, NK cells are not innately able to perform targeted cancer immunotherapy. Aptamers are short single-stranded oligonucleotides that specifically recognize their targets with high affinity in a similar manner to antibodies. To render NK cells with target-specificity, synthetic CD30-specific aptamers are anchored on cell surfaces to produce aptamer-engineered NK cells (ApEn-NK) without genetic alteration or cell damage. Under surface-anchored aptamer guidance, ApEn-NK specifically bind to CD30-expressing lymphoma cells but do not react to off-target cells. The resulting specific cell binding of ApEn-NK triggers higher apoptosis/death rates of lymphoma cells compared to parental NK cells. Additionally, experiments with primary human NK cells demonstrate the potential of ApEn-NK to specifically target and kill lymphoma cells, thus presenting a potential new approach for targeted immunotherapy by NK cells.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Imunidade Adaptativa/genética , Imunidade Adaptativa/fisiologia , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Imunoterapia/métodos , Antígeno Ki-1/metabolismo , Linfoma/imunologia , Linfoma/metabolismo
15.
Small ; 14(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205808

RESUMO

Chemotherapy is the mainstream treatment of anaplastic large cell lymphoma (ALCL). However, chemotherapy can cause severe adverse effects in patients because it is not ALCL-specific. In this study, a multifunctional aptamer-nanomedicine (Apt-NMed) achieving targeted chemotherapy and gene therapy of ALCL is developed. Apt-NMed is formulated by self-assembly of synthetic oligonucleotides containing CD30-specific aptamer and anaplastic lymphoma kinase (ALK)-specific siRNA followed by self-loading of the chemotherapeutic drug doxorubicin (DOX). Apt-NMed exhibits a well-defined nanostructure (diameter 59 mm) and stability in human serum. Under aptamer guidance, Apt-NMed specifically binds and internalizes targeted ALCL cells. Intracellular delivery of Apt-NMed triggers rapid DOX release for targeted ALCL chemotherapy and intracellular delivery of the ALK-specific siRNA induced ALK oncogene silencing, resulting in combined therapeutic effects. Animal model studies reveal that upon systemic administration, Apt-NMed specifically targets and selectively accumulates in ALCL tumor site, but does not react with off-target tumors in the same xenograft mouse. Importantly, Apt-NMed not only induces significantly higher inhibition in ALCL tumor growth, but also causes fewer or no side effects in treated mice compared to free DOX. Moreover, Apt-NMed treatment markedly improves the survival rate of treated mice, opening a new avenue for precision treatment of ALCL.


Assuntos
Aptâmeros de Nucleotídeos/química , Nanomedicina/métodos , Animais , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Terapia Genética/métodos , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/mortalidade , Linfoma Anaplásico de Células Grandes/terapia , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Nanoestruturas/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Taxa de Sobrevida , Células U937
16.
Theranostics ; 7(5): 1204-1213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435459

RESUMO

The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (Kd = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Linfócitos B/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Citarabina/metabolismo , Endocitose , Linfócitos B/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
17.
Sci Adv ; 1(7): e1500454, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26601238

RESUMO

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) nuclease system represents an efficient tool for genome editing and gene function analysis. It consists of two components: single-guide RNA (sgRNA) and the enzyme Cas9. Typical sgRNA and Cas9 intracellular delivery techniques are limited by their reliance on cell type and exogenous materials as well as their toxic effects on cells (for example, electroporation). We introduce and optimize a microfluidic membrane deformation method to deliver sgRNA and Cas9 into different cell types and achieve successful genome editing. This approach uses rapid cell mechanical deformation to generate transient membrane holes to enable delivery of biomaterials in the medium. We achieved high delivery efficiency of different macromolecules into different cell types, including hard-to-transfect lymphoma cells and embryonic stem cells, while maintaining high cell viability. With the advantages of broad applicability across different cell types, particularly hard-to-transfect cells, and flexibility of application, this method could potentially enable new avenues of biomedical research and gene targeting therapy such as mutation correction of disease genes through combination of the CRISPR-Cas9-mediated knockin system.

18.
Sci Rep ; 5: 13241, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26283179

RESUMO

Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.


Assuntos
Adenosina Trifosfatases/metabolismo , Sobrevivência Celular/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Estresse Oxidativo/fisiologia , Biossíntese de Proteínas/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos
19.
Biomaterials ; 67: 42-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26204224

RESUMO

Oligonucleotide aptamers can specifically bind biomarkers on cancer cells and can be readily chemically modified with different functional molecules for personalized medicine. To target acute myeloid leukemia (AML) cells, we developed a single-strand DNA aptamer specific for the biomarker CD117, which is highly expressed on AML cells. Sequence alignment revealed that the aptamer contained a G-rich core region with a well-conserved functional G-quadruplex structure. Functional assays demonstrated that this synthetic aptamer was able to specifically precipitate CD117 proteins from cell lysates, selectively bound cultured and patient primary AML cells with high affinity (Kd < 5 nM), and was specifically internalized into CD117-expressing cells. For targeted AML treatment, aptamer-drug conjugates were fabricated by chemical synthesis of aptamer (Apt) with methotrexate (MTX), a central drug used in AML chemotherapy regimens. The formed Apt-MTX conjugates specifically inhibited AML cell growth, triggered cell apoptosis, and induced cell cycle arrest in G1 phase. Importantly, Apt-MTX had little effect on CD117-negative cells under the same treatment conditions. Moreover, exposure of patient marrow specimens to Apt-MTX resulted in selective growth inhibition of primary AML cells and had no toxicity to off-target background normal marrow cells within the same specimens. These findings indicate the potential clinical value of Apt-MTX for targeted AML therapy with minimal to no side effects in patients, and also open an avenue to chemical synthesis of new, targeted biotherapeutics.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Metotrexato/uso terapêutico , Terapia de Alvo Molecular , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA de Cadeia Simples , Humanos , Leucemia Mieloide Aguda/patologia , Metotrexato/química , Metotrexato/farmacologia , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-kit/metabolismo
20.
Mol Ther Nucleic Acids ; 3: e184, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25118170

RESUMO

The current antibody-mediated numeration assays of circulating tumor cells (CTCs) require multiple steps and are time-consuming. To overcome these technical limitations, a cancer cell-activatable aptamer-reporter was formulated by conjugating a biomarker-specific aptamer sequence with paired fluorochrome-quencher molecules. In contrast to the antibody probes, the intact aptamer-reporter was optically silent in the absence of cells of interest. However, when used in an assay, the aptamer selectively targeted cancer cells through interaction with a specific surface biomarker, which triggered internalization of the aptamer-reporter and, subsequently, into cell lysosomes. Rapid lysosomal degradation of the aptamer-reporter resulted in separation of the paired fluorochrome-quencher molecules. The released fluorochrome emitted bright fluorescent signals exclusively within the targeted cancer cells, with no background noise in the assay. Thus, the assays could be completed in a single step within minutes. By using this one-step assay, CTCs in whole blood and marrow aspirate samples of patients with lymphoma tumors were selectively highlighted and rapidly detected with no off-target signals from background blood cells. The development of the cancer cell-activatable aptamer-reporter system allows for the possibility of a simple and robust point-of-care test for CTC detection, which is currently unavailable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA