Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Clin Oncol ; 15(2): 195-207, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455133

RESUMO

Interferon-gamma (IFN-γ) plays a dual role in cancer; it is both a pro- and an antitumorigenic cytokine, depending on the type of cancer. The deregulation of the IFN-γ canonic pathway is associated with several disorders, including vulnerability to viral infections, inflammation, and cancer progression. In particular, the interplay between lung adenocarcinoma (LUAD) and viral infections appears to exist in association with the deregulation of IFN-γ signaling. In this mini-review, we investigated the status of the IFN-γ signaling pathway and the expression level of its components in LUAD. Interestingly, a reduction in IFNGR1 expression seems to be associated with LUAD progression, affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2. In addition, alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γ signaling in LUAD.

2.
Explor Target Antitumor Ther ; 4(4): 699-715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711589

RESUMO

Interferon (IFN)-stimulated gene 15 (ISG15) is a member of the ubiquitin-like (UBL) protein family that can modify specific proteins via a catalytic process called ISGylation. This posttranslational modification can modulate the stability of the ISGylated proteins and protein-protein interactions. Some proteins modified by ISG15 have been identified in malignant neoplasms, suggesting the functional relevance of ISGylation in cancer. This review discusses the ISGylated proteins reported in malignant neoplasms that suggest the potential of ISG15 as a biomarker and therapeutic target in cancer.

3.
Biochem Biophys Res Commun ; 621: 144-150, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35834923

RESUMO

Interferon stimulated gene 15 (ISG15) encodes a 15-kDa ubiquitin-like protein that acts as a posttranslational modifier of target proteins via ISGylation, a catalytic process similar to ubiquitination. Protein ISGylation is associated with the modulation of protein stability and protein-protein interactions. Furthermore, non-conjugated ISG15 (free ISG15) is secreted to act as a cytokine-like protein in some cellular contexts. The expression of ISG15 in some cancer types is dysregulated, but its expression status in glioblastoma, a malignant brain tumor highly aggressive and invasive, requires more studies. To explore the potential of ISG15 as a biomarker for glioblastoma, we first evaluated the ISG15 levels in glioblastoma cell lines and the effect of IFN-γ treatment on protein levels and localization of ISG15. In addition, we analyzed the ISG15 levels in glioblastoma samples compared to healthy brain tissue. Our results indicate that ISG15 levels are increased in glioblastoma and are upregulated in response to IFN-γ stimulus, suggesting that ISG15 and ISGylation may play a central role in glioblastoma progression. Thus, ISG15/ISGyaltion may be useful as biomarkers of this type of malignant brain tumors.


Assuntos
Glioblastoma , Interferons , Antivirais , Citocinas/metabolismo , Glioblastoma/genética , Humanos , Interferons/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Mol Biol Rep ; 48(11): 7517-7526, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34657250

RESUMO

Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERß), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer's disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Pós-Menopausa/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Feminino , Humanos
5.
Mater Sci Eng C Mater Biol Appl ; 129: 112348, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579876

RESUMO

The use of viral vectors for in vivo gene therapy can be severely limited by their immunogenicity. Non-viral vectors may represent an alternative, however, reports analyzing their immunogenicity are still lacking. Here, we studied the humoral immune response in a murine model triggered by artificial virus-like particles (AVLPs) carrying plasmid or antisense DNA. The AVLPs were assembled using a family of modular proteins based on bioinspired collagen-like and silk-like sequences that produce virus-like particles. We compared our AVLPs against an Adeno Associated Virus 1 (AAV), a widely used viral vector for in vivo gene delivery that has been approved by the FDA and EMA for gene therapy. We found that a 1000-fold higher mass of AVLPs than AAV are necessary to obtain similar specific antibody titters. Furthermore, we studied the stability of AVLPs against relevant biological reagents such as heparin and fetal bovine serum to ensure nucleic acid protection in biological media. Our study demonstrates that the AVLPs are stable in physiological conditions and can overcome safety limitations such as immunogenicity. The scarce humoral immunogenicity and high stability found with AVLPs suggest that they have potential to be used as stealth non-viral gene delivery systems for in vivo studies or gene therapy.


Assuntos
Dependovirus , Imunidade Humoral , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos , Camundongos
6.
Explor Target Antitumor Ther ; 2(6): 496-510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36046115

RESUMO

Breast cancer (BC) is a highly heterogeneous neoplasm of the mammary tissue, causing the deaths of a large number of women worldwide. Nearly 70% and 20% of BC cases are estrogen receptor alpha positive (ERα+) and human epidermal growth factor receptor 2-positive (HER2+), respectively; therefore, ER and HER2 targeted therapies have been employed in BC treatment. However, resistance to these therapies has been reported, indicating a need for developing novel therapeutic strategies. Proteolysis-targeting chimeras (PROTACs) are new, promising therapeutic tools designed with a bimodular structure: one module allows specific binding to target proteins, and the other module allows efficient degradation of these target proteins. In this paper, PROTACs and their potential in controlling the progression of ERα and HER2+ BC are discussed.

7.
Front Immunol ; 11: 1100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582186

RESUMO

Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.


Assuntos
Células Dendríticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Humanos
8.
BMC Biotechnol ; 20(1): 1, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31959159

RESUMO

BACKGROUND: The use of biomaterials has been expanded to improve the characteristics of vaccines. Recently we have identified that the peptide PH(1-110) from polyhedrin self-aggregates and incorporates foreign proteins to form particles. We have proposed that this peptide can be used as an antigen carrying system for vaccines. However, the immune response generated by the antigen fused to the peptide has not been fully characterized. In addition, the adjuvant effect and thermostability of the particles has not been evaluated. RESULTS: In the present study we demonstrate the use of a system developed to generate nano and microparticles carrying as a fusion protein peptides or proteins of interest to be used as vaccines. These particles are purified easily by centrifugation. Immunization of animals with the particles in the absence of adjuvant result in a robust and long-lasting immune response. Proteins contained inside the particles are maintained for over 1 year at ambient temperature, preserving their immunological properties. CONCLUSION: The rapid and efficient production of the particles in addition to the robust immune response they generate position this system as an excellent method for the rapid response against emerging diseases. The thermostability conferred by the particle system facilitates the distribution of the vaccines in developing countries or areas with no electricity.


Assuntos
Antígenos/imunologia , Imunoglobulinas/metabolismo , Proteínas de Matriz de Corpos de Inclusão/química , Peptídeos/química , Vacinas/imunologia , Animais , Antígenos/química , Estabilidade de Medicamentos , Feminino , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/imunologia , Imunização , Camundongos , Nanopartículas , Tamanho da Partícula , Agregados Proteicos , Proteínas Recombinantes de Fusão/imunologia , Termodinâmica , Vacinas/química
9.
Expert Rev Vaccines ; 17(8): 723-738, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30074424

RESUMO

INTRODUCTION: Recently, subunit vaccines are replacing some of the traditional vaccines because they offer a higher margin of safety. However, generally subunit vaccines have low antigenicity. Adjuvants are used in vaccine formulations to increase their immunogenicity, but current research suggests that adjuvants could induce serious side effects in susceptible individuals; therefore, the improvement of antigens and adjuvants is important. AREAS COVERED: Here we reviewed some self-aggregating peptides (SAPs) used as antigen delivery systems. SAPs are based on a short sequence of amino acids, which have self-aggregating properties, inducing self-interaction among peptide molecules by means of non-covalent interactions to generate nanoparticles (NPs). EXPERT COMMENTARY: SAPs increase the immunogenicity of fused/conjugated antigens because they can interact with antigen-presenting cells and induce adaptive immunity based on both humoral and cellular responses. As an example, we report an antigen delivery system based on SAPs forming NPs. These NPs are synthesized using a recombinant baculovirus. We fused the green fluorescent protein to the first 110 amino acids of polyhedrin protein from Autographa californica nucleopolyhedrovirus, which has self-aggregating properties. We showed that these NPs prompt high antibody levels without inducing inflammation, similarly to some SAPs reported here.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Peptídeos/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Adaptativa/imunologia , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunogenicidade da Vacina/imunologia , Nanopartículas , Peptídeos/imunologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA