Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e111021, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993232

RESUMO

Individual cells within de novo polarising tubes and cavities must integrate their forming apical domains into a centralised apical membrane initiation site (AMIS). This is necessary to enable organised lumen formation within multi-cellular tissue. Despite the well-documented importance of cell division in localising the AMIS, we have found a division-independent mechanism of AMIS localisation that relies instead on Cadherin-mediated cell-cell adhesion. Our study of de novo polarising mouse embryonic stem cells (mESCs) cultured in 3D suggests that cell-cell adhesion localises apical proteins such as PAR-6 to a centralised AMIS. Unexpectedly, we also found that mESC clusters lacking functional E-cadherin still formed a lumen-like cavity in the absence of AMIS localisation but did so at a later stage of development via a "closure" mechanism, instead of via hollowing. This work suggests that there are two, interrelated mechanisms of apical polarity localisation: cell adhesion and cell division. Alignment of these mechanisms in space allows for redundancy in the system and ensures the development of a coherent epithelial structure within a growing organ.


Assuntos
Caderinas , Polaridade Celular , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Adesão Celular , Células Epiteliais/metabolismo
2.
Nat Commun ; 13(1): 610, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105859

RESUMO

Lima1 is an extensively studied prognostic marker of malignancy and is also considered to be a tumour suppressor, but its role in a developmental context of non-transformed cells is poorly understood. Here, we characterise the expression pattern and examined the function of Lima1 in mouse embryos and pluripotent stem cell lines. We identify that Lima1 expression is controlled by the naïve pluripotency circuit and is required for the suppression of membrane blebbing, as well as for proper mitochondrial energetics in embryonic stem cells. Moreover, forcing Lima1 expression enables primed mouse and human pluripotent stem cells to be incorporated into murine pre-implantation embryos. Thus, Lima1 is a key effector molecule that mediates the pluripotency control of membrane dynamics and cellular metabolism.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto , Proliferação de Células , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Camundongos , Células-Tronco Pluripotentes/citologia
3.
Elife ; 102021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487490

RESUMO

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.


At the beginning of a human pregnancy, the embryo implants into the uterus lining, known as the endometrium. At this point, the endometrium transforms into a new tissue that helps the placenta to form. Problems in this transformation process are linked to pregnancy disorders, many of which can lead to implantation failure (the embryo fails to invade the endometrium altogether) or recurrent miscarriages (the embryo implants successfully, but the interface between the placenta and the endometrium subsequently breaks down). Studying the implantation of human embryos directly is difficult due to ethical and technical barriers, and animals do not perfectly mimic the human process, making it challenging to determine the causes of pregnancy disorders. However, it is likely that a form of cellular arrest called senescence, in which cells stop dividing but remain metabolically active, plays a role. Indeed, excessive senescence in the cells that make up the endometrium is associated with recurrent miscarriage, while a lack of senescence is associated with implantation failure. To study this process, Rawlings et al. developed a new laboratory model of the human endometrium by assembling two of the main cell types found in the tissue into a three-dimensional structure. When treated with hormones, these 'assembloids' successfully mimic the activity of genes in the cells of the endometrium during implantation. Rawlings et al. then exposed the assembloids to the drug dasatinib, which targets and eliminates senescent cells. This experiment showed that assembloids become very robust and static when devoid of senescent cells. Rawlings et al. then studied the interaction between embryos and assembloids using time-lapse imaging. In the absence of dasatinib treatment, cells in the assembloid migrated towards the embryo as it expanded, a process required for implantation. However, when senescent cells were eliminated using dasatinib, this movement of cells towards the embryo stopped, and the embryo failed to expand, in a situation that mimicks implantation failure. The assembloid model of the endometrium may help scientists to study endometrial defects in the lab and test potential treatments. Further work will include other endometrial cell types in the assembloids, and could help increase the reliability of the model. However, any drug treatments identified using this model will need further research into their safety and effectiveness before they can be offered to patients.


Assuntos
Senescência Celular , Implantação do Embrião/fisiologia , Endométrio/citologia , Células Estromais/citologia , Técnicas de Cocultura , Decídua/fisiologia , Feminino , Humanos , Organoides , Gravidez
4.
Elife ; 102021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34569938

RESUMO

Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.


Assuntos
Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Polaridade Celular , Embrião de Mamíferos/enzimologia , Actinas/metabolismo , Adulto , Técnicas de Cultura Embrionária , Feminino , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Fosfoinositídeo Fosfolipase C , Fosfolipase C beta , Gravidez , Transdução de Sinais , Fatores de Tempo , Adulto Jovem
5.
Nat Commun ; 12(1): 5550, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548496

RESUMO

Understanding human development is of fundamental biological and clinical importance. Despite its significance, mechanisms behind human embryogenesis remain largely unknown. Here, we attempt to model human early embryo development with expanded pluripotent stem cells (EPSCs) in 3-dimensions. We define a protocol that allows us to generate self-organizing cystic structures from human EPSCs that display some hallmarks of human early embryogenesis. These structures mimic polarization and cavitation characteristic of pre-implantation development leading to blastocyst morphology formation and the transition to post-implantation-like organization upon extended culture. Single-cell RNA sequencing of these structures reveals subsets of cells bearing some resemblance to epiblast, hypoblast and trophectoderm lineages. Nevertheless, significant divergences from natural blastocysts persist in some key markers, and signalling pathways point towards ways in which morphology and transcriptional-level cell identities may diverge in stem cell models of the embryo. Thus, this stem cell platform provides insights into the design of stem cell models of embryogenesis.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores/metabolismo , Blastocisto/metabolismo , Linhagem da Célula/genética , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Expressão Gênica , Humanos , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
6.
Cell Rep ; 34(3): 108655, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472064

RESUMO

Implantation is a hallmark of mammalian embryogenesis during which embryos establish their contacts with the maternal endometrium, remodel, and undertake growth and differentiation. The mechanisms and sequence of events through which embryos change their shape during this transition are largely unexplored. Here, we show that the first extraembryonic lineage, the polar trophectoderm, is the key regulator for remodeling the embryonic epiblast. Loss of its function after immuno-surgery or inhibitor treatments prevents the epiblast shape transitions. In the mouse, the polar trophectoderm exerts physical force upon the epiblast, causing it to transform from an oval into a cup shape. In human embryos, the polar trophectoderm behaves in the opposite manner, exerting a stretching force. By mimicking this stretching behavior in mouse embryogenesis, we could direct the epiblast to adopt the disc-like shape characteristic of human embryos at this stage. Thus, the polar trophectoderm acts as a conserved regulator of epiblast shape.


Assuntos
Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
7.
Nat Commun ; 11(1): 3987, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778678

RESUMO

Aneuploidy, the presence of an abnormal number of chromosomes, is a major cause of early pregnancy loss in humans. Yet, the developmental consequences of specific aneuploidies remain unexplored. Here, we determine the extent of post-implantation development of human embryos bearing common aneuploidies using a recently established culture platform. We show that while trisomy 15 and trisomy 21 embryos develop similarly to euploid embryos, monosomy 21 embryos exhibit high rates of developmental arrest, and trisomy 16 embryos display a hypo-proliferation of the trophoblast, the tissue that forms the placenta. Using human trophoblast stem cells, we show that this phenotype can be mechanistically ascribed to increased levels of the cell adhesion protein E-CADHERIN, which lead to premature differentiation and cell cycle arrest. We identify three cases of mosaicism in embryos diagnosed as full aneuploid by pre-implantation genetic testing. Our results present the first detailed analysis of post-implantation development of aneuploid human embryos.


Assuntos
Aneuploidia , Implantação do Embrião/genética , Embrião de Mamíferos , Desenvolvimento Embrionário , Antígenos CD/genética , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Pontos de Checagem do Ciclo Celular , Linhagem da Célula , Segregação de Cromossomos , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 21 , Feminino , Genes erbB-1/genética , Testes Genéticos , Humanos , Monossomia , Mosaicismo , Gravidez , Células-Tronco , Trissomia
8.
Nat Cell Biol ; 21(11): 1321-1333, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685987

RESUMO

Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Epigenoma , Regeneração Hepática/genética , Fígado/metabolismo , Organoides/metabolismo , Proteínas Proto-Oncogênicas/genética , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Via de Sinalização Hippo , Fígado/citologia , Masculino , Camundongos Transgênicos , Organoides/citologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
9.
Nat Commun ; 9(1): 424, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382819

RESUMO

Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the ß-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and ß-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/ß-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Embrionárias/citologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tumoral p73/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Hippo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteínas Supressoras de Tumor/genética , Proteínas Wnt/metabolismo , Proteínas de Sinalização YAP , beta Catenina/metabolismo
10.
J Cell Biol ; 216(11): 3571-3590, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28972102

RESUMO

Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.


Assuntos
Aurora Quinase A/metabolismo , Centríolos/enzimologia , Meiose , Microtúbulos/enzimologia , Oócitos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética , Células Cultivadas , Centríolos/efeitos dos fármacos , Técnicas de Cultura Embrionária , Feminino , Cinética , Meiose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microtúbulos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Proteína ran de Ligação ao GTP/metabolismo
11.
Open Biol ; 5(12): 150209, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26701933

RESUMO

To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and ß-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Hiperplasia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Centríolos/metabolismo , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Precursores de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética
12.
Nat Methods ; 12(6): 519-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915121

RESUMO

The simultaneous sequencing of a single cell's genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


Assuntos
DNA/genética , Genômica/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
13.
Nature ; 507(7490): 104-8, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24463520

RESUMO

Citrullination is the post-translational conversion of an arginine residue within a protein to the non-coded amino acid citrulline. This modification leads to the loss of a positive charge and reduction in hydrogen-bonding ability. It is carried out by a small family of tissue-specific vertebrate enzymes called peptidylarginine deiminases (PADIs) and is associated with the development of diverse pathological states such as autoimmunity, cancer, neurodegenerative disorders, prion diseases and thrombosis. Nevertheless, the physiological functions of citrullination remain ill-defined, although citrullination of core histones has been linked to transcriptional regulation and the DNA damage response. PADI4 (also called PAD4 or PADV), the only PADI with a nuclear localization signal, was previously shown to act in myeloid cells where it mediates profound chromatin decondensation during the innate immune response to infection. Here we show that the expression and enzymatic activity of Padi4 are also induced under conditions of ground-state pluripotency and during reprogramming in mouse. Padi4 is part of the pluripotency transcriptional network, binding to regulatory elements of key stem-cell genes and activating their expression. Its inhibition lowers the percentage of pluripotent cells in the early mouse embryo and significantly reduces reprogramming efficiency. Using an unbiased proteomic approach we identify linker histone H1 variants, which are involved in the generation of compact chromatin, as novel PADI4 substrates. Citrullination of a single arginine residue within the DNA-binding site of H1 results in its displacement from chromatin and global chromatin decondensation. Together, these results uncover a role for citrullination in the regulation of pluripotency and provide new mechanistic insights into how citrullination regulates chromatin compaction.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Citrulina/metabolismo , Histonas/química , Histonas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Reprogramação Celular/genética , Cromatina/química , DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Hidrolases/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Proteína-Arginina Desiminase do Tipo 4 , Desiminases de Arginina em Proteínas , Proteômica , Especificidade por Substrato , Transcrição Gênica
14.
J Cell Sci ; 125(Pt 24): 6094-104, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23077180

RESUMO

How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state.


Assuntos
Células-Tronco Embrionárias/fisiologia , Histonas/metabolismo , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/genética , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigenômica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transfecção
15.
Fertil Steril ; 97(3): 742-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22217962

RESUMO

OBJECTIVE: To evaluate the imaging of cytoplasmic movements in human oocytes as a potential method to monitor the pattern of Ca(2+) oscillations during activation. DESIGN: Test of a laboratory technique. SETTING: University medical school research laboratory. PATIENT(S): Donated unfertilized human oocytes from intracytoplasmic sperm injection (ICSI) cycles. INTERVENTION(S): Microinjection of oocytes with phospholipase C (PLC) zeta (ζ) cRNA and a Ca(2+)-sensitive fluorescent dye. MAIN OUTCOME MEASURE(S): Simultaneous detection of oocyte cytoplasmic movements using particle image velocimetry (PIV) and of Ca(2+) oscillations using a Ca(2+)-sensitive fluorescent dye. RESULT(S): Microinjection of PLCζ cRNA into human oocytes that had failed to fertilize after ICSI resulted in the appearance of prolonged Ca(2+) oscillations. Each transient Ca(2+) concentration change was accompanied by a small coordinated movement of the cytoplasm that could be detected using PIV analysis. CONCLUSION(S): The occurrence and frequency of cytoplasmic Ca(2+) oscillations, a critical parameter in activating human zygotes, can be monitored by PIV analysis of cytoplasmic movements. This simple method provides a novel, noninvasive approach to determine in real time the occurrence and frequency of Ca(2+) oscillations in human zygotes.


Assuntos
Sinalização do Cálcio , Citoplasma/enzimologia , Oócitos/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Injeções de Esperma Intracitoplásmicas , Feminino , Corantes Fluorescentes/administração & dosagem , Humanos , Masculino , Microinjeções , Microscopia de Fluorescência , Movimento (Física) , Fosfoinositídeo Fosfolipase C/genética , RNA Complementar/administração & dosagem , Reologia , Fatores de Tempo , Falha de Tratamento
16.
Dev Biol ; 331(2): 210-21, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19422818

RESUMO

In the mouse blastocyst, some cells of the inner cell mass (ICM) develop into primitive endoderm (PE) at the surface, while deeper cells form the epiblast. It remained unclear whether the position of cells determines their fate, such that gene expression is adjusted to cell position, or if cells are pre-specified at random positions and then sort. We have tracked and characterised dynamics of all ICM cells from the early to late blastocyst stage. Time-lapse microscopy in H2B-EGFP embryos shows that a large proportion of ICM cells change position between the surface and deeper compartments. Most of this cell movement depends on actin and is associated with cell protrusions. We also find that while most cells are precursors for only one lineage, some give rise to both, indicating that lineage segregation is not complete in the early ICM. Finally, changing the expression levels of the PE marker Gata6 reveals that it is required in surface cells but not sufficient for the re-positioning of deeper cells. We provide evidence that Wnt9A, known to be expressed in the surface ICM, facilitates re-positioning of Gata6-expressing cells. Combining these experimental results with computer modelling suggests that PE formation involves both cell sorting movements and position-dependent induction.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Massa Celular Interna do Blastocisto/fisiologia , Padronização Corporal/fisiologia , Diferenciação Celular/fisiologia , Endoderma/citologia , Endoderma/embriologia , Endoderma/fisiologia , Fator de Transcrição GATA6/metabolismo , Camundongos , Modelos Biológicos , Proteínas Wnt/metabolismo
17.
Dev Biol ; 309(1): 97-112, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17662710

RESUMO

Initiation of the development of the anterior-posterior axis in the mouse embryo has been thought to take place only when the anterior visceral endoderm (AVE) emerges and starts its asymmetric migration. However, expression of Lefty1, a marker of the AVE, was recently found to initiate before embryo implantation. This finding has raised two important questions: are the cells that show such early, preimplantation expression of this AVE marker the real precursors of the AVE and, if so, how does this contribute to the establishment of the AVE? Here, we address both of these questions. First, we show that the expression of another AVE marker, Cer1, also commences before implantation and its expression becomes consolidated in the subset of ICM cells that comprise the primitive endoderm. Second, to determine whether the cells showing this early Cer1 expression are true precursors of the AVE, we set up conditions to trace these cells in time-lapse studies from early periimplantation stages until the AVE emerges and becomes asymmetrically displaced. We found that Cer1-expressing cells are asymmetrically located after implantation and, as the embryo grows, they become dispersed into two or three clusters. The expression of Cer1 in the proximal domain is progressively diminished, whilst it is reinforced in the distal-lateral domain. Our time-lapse studies demonstrate that this distal-lateral domain is incorporated into the AVE together with cells in which Cer1 expression begins only after implantation. Thus, the AVE is formed from both part of an ancestral population of Cerl-expressing cells and cells that acquire Cer1 expression later. Finally, we demonstrate that when the AVE shifts asymmetrically to establish the anterior pole, this occurs towards the region where the earlier postimplantation expression of Cer1 was strongest. Together, these results suggest that the orientation of the anterior-posterior axis is already anticipated before AVE migration.


Assuntos
Diferenciação Celular/fisiologia , Implantação do Embrião , Células-Tronco Embrionárias/citologia , Endoderma/fisiologia , Proteínas/metabolismo , Animais , Antígenos de Diferenciação/metabolismo , Padronização Corporal , Movimento Celular/fisiologia , Citocinas , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Camundongos
18.
J Cell Biol ; 174(3): 329-38, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16880268

RESUMO

The first events of the development of any embryo are under maternal control until the zygotic genome becomes activated. In the mouse embryo, the major wave of transcription activation occurs at the 2-cell stage, but transcription starts already at the zygote (1-cell) stage. Very little is known about the molecules involved in this process. We show that the transcription intermediary factor 1 alpha (TIF1alpha) is involved in modulating gene expression during the first wave of transcription activation. At the onset of genome activation, TIF1alpha translocates from the cytoplasm into the pronuclei to sites of active transcription. These sites are enriched with the chromatin remodelers BRG-1 and SNF2H. When we ablate TIF1alpha through either RNA interference (RNAi) or microinjection of specific antibodies into zygotes, most of the embryos arrest their development at the 2-4-cell stage transition. The ablation of TIF1alpha leads to mislocalization of RNA polymerase II and the chromatin remodelers SNF2H and BRG-1. Using a chromatin immunoprecipitation cloning approach, we identify genes that are regulated by TIF1alpha in the zygote and find that transcription of these genes is misregulated upon TIF1alpha ablation. We further show that the expression of some of these genes is dependent on SNF2H and that RNAi for SNF2H compromises development, suggesting that TIF1alpha mediates activation of gene expression in the zygote via SNF2H. These studies indicate that TIF1alpha is a factor that modulates the expression of a set of genes during the first wave of genome activation in the mouse embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Zigoto/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Anticorpos/imunologia , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fase de Clivagem do Zigoto/citologia , DNA Helicases , Feminino , Genes Controladores do Desenvolvimento/genética , Genoma/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/deficiência , Transporte Proteico , Interferência de RNA , RNA Polimerase III/metabolismo , Fatores de Transcrição/deficiência , Zigoto/citologia
19.
Reproduction ; 130(3): 311-20, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16123238

RESUMO

The site of second meiotic division, marked by the second polar body, is an important reference point in the early mouse embryo. To study its formation, we look at the highly asymmetric meiotic divisions. For extrusion of the small polar bodies during meiosis, the spindles must be located cortically. The positioning of meiotic spindles is known to involve the actin cytoskeleton, but whether microtubules are also involved is not clear. In this study we investigated the patterns of localisation of microtubule regulatory proteins in mouse oocytes. PAR-1 is a member of the PAR (partitioning-defective) family with known roles in regulation of microtubule stability and spindle positioning in other model systems. Here we show its specific localisation on mouse meiotic and first mitotic spindles. In addition, the microtubule-associated proteins CLASP2 (a CLIP associating protein) and dynactin-p50 are found on kinetochores and a subset of microtubule-organising centres. Thus we show specific localisation of microtubule regulatory proteins in mouse oocytes, which could indicate roles in meiotic spindle organisation.


Assuntos
Fase de Clivagem do Zigoto/ultraestrutura , Proteínas Associadas aos Microtúbulos/análise , Óvulo/química , Receptor PAR-1/análise , Fuso Acromático/química , Animais , Western Blotting/métodos , Fase de Clivagem do Zigoto/química , Complexo Dinactina , Feminino , Imuno-Histoquímica/métodos , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Oogênese , Óvulo/fisiologia , RNA Mensageiro/análise , Receptor PAR-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/análise
20.
Genesis ; 40(3): 157-63, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15515021

RESUMO

Embryonic stem (ES) and embryonic carcinoma (EC) cells are pluripotent and have the capacity to differentiate into many cell types. The ability to direct their differentiation should have considerable practical applications. Here, we first report the use of diced short interfering RNAi against Oct4 in a transient approach, to direct differentiation of ES towards the trophectoderm lineage. We then apply this approach to downregulate Smad4 in mouse P19 EC cells. We have found that this leads to an increase in the levels of Pax6 (a neuroectoderm marker), reduction in the levels of Brachyury (a mesoderm marker), and a 3-fold increase in the number of betaIII tubulin-positive colonies when these cells were allowed to differentiate. This indicates a redirection of cell fate towards the neuroectoderm lineage. Thus, transient RNAi could provide a valuable tool to direct pluripotent cells along specific pathways of differentiation while circumventing permanent genetic changes.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/genética , Células-Tronco Pluripotentes/citologia , Interferência de RNA , Fatores de Transcrição/genética , Transfecção , Animais , Linhagem da Célula , Células Cultivadas , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Proteínas do Olho , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras , Proteína Smad4 , Proteínas com Domínio T/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA