Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cancer Discov ; 4(1): 78-97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36346827

RESUMO

Genomic profiling revealed the identity of at least 5 subtypes of diffuse large B-cell lymphoma (DLBCL), including the MCD/C5 cluster characterized by aberrations in MYD88, BCL2, PRDM1, and/or SPIB. We generated mouse models harboring B cell-specific Prdm1 or Spib aberrations on the background of oncogenic Myd88 and Bcl2 lesions. We deployed whole-exome sequencing, transcriptome, flow-cytometry, and mass cytometry analyses to demonstrate that Prdm1- or Spib-altered lymphomas display molecular features consistent with prememory B cells and light-zone B cells, whereas lymphomas lacking these alterations were enriched for late light-zone and plasmablast-associated gene sets. Consistent with the phenotypic evidence for increased B cell receptor signaling activity in Prdm1-altered lymphomas, we demonstrate that combined BTK/BCL2 inhibition displays therapeutic activity in mice and in five of six relapsed/refractory DLBCL patients. Moreover, Prdm1-altered lymphomas were immunogenic upon transplantation into immuno-competent hosts, displayed an actionable PD-L1 surface expression, and were sensitive to antimurine-CD19-CAR-T cell therapy, in vivo. SIGNIFICANCE: Relapsed/refractory DLBCL remains a major medical challenge, and most of these patients succumb to their disease. Here, we generated mouse models, faithfully recapitulating the biology of MYD88-driven human DLBCL. These models revealed robust preclinical activity of combined BTK/BCL2 inhibition. We confirmed activity of this regimen in pretreated non-GCB-DLBCL patients. See related commentary by Leveille et al., p. 8. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Camundongos , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos B , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/terapia , Plasmócitos/metabolismo , Plasmócitos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/uso terapêutico
2.
Nature ; 607(7920): 776-783, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859176

RESUMO

Mutations of the ADAR1 gene encoding an RNA deaminase cause severe diseases associated with chronic activation of type I interferon (IFN) responses, including Aicardi-Goutières syndrome and bilateral striatal necrosis1-3. The IFN-inducible p150 isoform of ADAR1 contains a Zα domain that recognizes RNA with an alternative left-handed double-helix structure, termed Z-RNA4,5. Hemizygous ADAR1 mutations in the Zα domain cause type I IFN-mediated pathologies in humans2,3 and mice6-8; however, it remains unclear how the interaction of ADAR1 with Z-RNA prevents IFN activation. Here we show that Z-DNA-binding protein 1 (ZBP1), the only other protein in mammals known to harbour Zα domains9, promotes type I IFN activation and fatal pathology in mice with impaired ADAR1 function. ZBP1 deficiency or mutation of its Zα domains reduced the expression of IFN-stimulated genes and largely prevented early postnatal lethality in mice with hemizygous expression of ADAR1 with mutated Zα domain (Adar1mZα/- mice). Adar1mZα/- mice showed upregulation and impaired editing of endogenous retroelement-derived complementary RNA reads, which represent a likely source of Z-RNAs activating ZBP1. Notably, ZBP1 promoted IFN activation and severe pathology in Adar1mZα/- mice in a manner independent of RIPK1, RIPK3, MLKL-mediated necroptosis and caspase-8-dependent apoptosis, suggesting a novel mechanism of action. Thus, ADAR1 prevents endogenous Z-RNA-dependent activation of pathogenic type I IFN responses by ZBP1, suggesting that ZBP1 could contribute to type I interferonopathies caused by ADAR1 mutations.


Assuntos
Adenosina Desaminase , Interferon Tipo I , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Apoptose , Caspase 8/metabolismo , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Camundongos , Mutação , Necroptose , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
PLoS One ; 11(4): e0154604, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128441

RESUMO

The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Proteínas Priônicas/genética , Animais , Linhagem Celular , Feminino , Expressão Gênica , Técnicas de Introdução de Genes/métodos , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Priônicas/genética , Regulação para Cima
4.
PLoS One ; 4(11): e7931, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19936202

RESUMO

BACKGROUND: Transgenic mice expressing mutated amyloid precursor protein (APP) and presenilin (PS)-1 or -2 have been successfully used to model cerebral beta-amyloidosis, one of the characteristic hallmarks of Alzheimer's disease (AD) pathology. However, the use of many transgenic lines is limited by premature death, low breeding efficiencies and late onset and high inter-animal variability of the pathology, creating a need for improved animal models. Here we describe the detailed characterization of a new homozygous double-transgenic mouse line that addresses most of these issues. METHODOLOGY/PRINCIPAL FINDINGS: The transgenic mouse line (ARTE10) was generated by co-integration of two transgenes carrying the K670N/M671L mutated amyloid precursor protein (APP(swe)) and the M146V mutated presenilin 1 (PS1) both under control of a neuron-specific promoter. Mice, hemi- as well as homozygous for both transgenes, are viable and fertile with good breeding capabilities and a low rate of premature death. They develop robust AD-like cerebral beta-amyloid plaque pathology with glial inflammation, signs of neuritic dystrophy and cerebral amyloid angiopathy. Using our novel image analysis algorithm for semi-automatic quantification of plaque burden, we demonstrate an early onset and progressive plaque deposition starting at 3 months of age in homozygous mice with low inter-animal variability and 100%-penetrance of the phenotype. The plaques are readily detected in vivo by PiB, the standard human PET tracer for AD. In addition, ARTE10 mice display early loss of synaptic markers and age-related cognitive deficits. By applying a gamma-secretase inhibitor we show a dose dependent reduction of soluble amyloid beta levels in the brain. CONCLUSIONS: ARTE10 mice develop a cerebral beta-amyloidosis closely resembling the beta-amyloid-related aspects of human AD neuropathology. Unifying several advantages of previous transgenic models, this line particularly qualifies for the use in target validation and for evaluating potential diagnostic or therapeutic agents targeting the amyloid pathology of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Amiloidose/genética , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Presenilina-1/genética , Regiões Promotoras Genéticas
5.
Biol Reprod ; 80(1): 34-41, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18799753

RESUMO

The G protein-coupled receptor Gpr30 (Gper) was recently claimed to bind to estradiol and to activate cytoplasmic signal transduction pathways in response to estradiol. However, there are conflicting data regarding the role of Gpr30 as an estrogen receptor (ER): several laboratories were unable to demonstrate estradiol binding to GPR30 or estradiol-activated signal transduction in Gpr30-expressing cells. To clarify the potential role of Gpr30 as an ER, we generated Gpr30-deficient mice. Although Gpr30 was expressed in all reproductive organs, histopathological analysis did not reveal any abnormalities in these organs in Gpr30-deficient mice. Mutant male and female mice were as fertile as their wild-type littermates, indicating normal function of the hypothalamic-pituitary-gonadal axis. Moreover, we analyzed estrogenic responses in two major estradiol target organs, the uterus and the mammary gland. For that purpose, we examined different readout paradigms such as morphological measures, cellular proliferation, and target gene expression. Our data demonstrate that in vivo Gpr30 is dispensable for the mediation of estradiol effects in reproductive organs. These results are in clear contrast to the phenotype of mice lacking the classic ER alpha (Esr1) or aromatase (Cyp19a1). We conclude that the perception of Gpr30 (based on homology related to peptide receptors) as an ER might be premature and has to be reconsidered.


Assuntos
Estradiol/farmacologia , Glândulas Mamárias Animais/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Útero/fisiologia , Animais , Animais Recém-Nascidos , Receptores ErbB/genética , Feminino , Perfilação da Expressão Gênica , Histocitoquímica , Tamanho da Ninhada de Vivíparos/fisiologia , Masculino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/química , RNA/genética , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Útero/efeitos dos fármacos , Útero/patologia
6.
Mol Cell Biol ; 23(11): 3982-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12748299

RESUMO

ES cell-tetraploid (ES) mice are completely derived from embryonic stem cells and can be obtained at high efficiency upon injection of hybrid ES cells into tetraploid blastocysts. This method allows the immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps. To provide a baseline for the analysis of ES mouse mutants, we performed a phenotypic characterization of wild-type B6129S6F(1) ES mice in relation to controls of the same age, sex, and genotype raised from normal matings. The comparison of 90 morphological, physiological, and behavioral parameters revealed elevated body weight and hematocrit as the only major difference of ES mice, which exhibited an otherwise normal phenotype. We further demonstrate that ES mouse mutants can be produced from mutant hybrid ES cells and analyzed within a period of only 4 months. Thus, ES mouse technology is a valid research tool for rapidly elucidating gene function in vivo.


Assuntos
Comportamento Animal/fisiologia , Embrião de Mamíferos/citologia , Engenharia Genética/métodos , Camundongos/genética , Células-Tronco/fisiologia , Animais , Blastocisto/citologia , Blastocisto/fisiologia , Análise Química do Sangue , Peso Corporal , Células Cultivadas , Metabolismo Energético/fisiologia , Feminino , Células Híbridas/fisiologia , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos , Camundongos Mutantes , Morfogênese/fisiologia , Fenótipo , Poliploidia , Células-Tronco/citologia
7.
Nat Genet ; 30(3): 295-300, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11810106

RESUMO

The transcriptional repressor Gfi1 is a nuclear zinc-finger protein expressed in T-cell precursors in the thymus and in activated mature T lymphocytes. Previous experiments have shown that Gfi1 is involved in T-cell lymphomagenesis and in the development of T-cell progenitors. Here we show that Gfi1 is also expressed outside the lymphoid system in granulocytes and activated macrophages, cells that mediate innate immunity (that is, non-specific immunity). We have generated Gfi1-deficient mice (Gfi1-/-) and show that these animals are severely neutropenic and accumulate immature monocytic cells in blood and bone marrow. Their myeloid precursor cells are unable to differentiate into granulocytes upon stimulation with granulocyte colony-stimulating factor (G-CSF) but can develop into mature macrophages. We found that Gfi1-/- macrophages produce enhanced levels of inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-10 (IL-10) and IL-1beta, when stimulated with bacterial lipopolysaccharide (LPS) and that Gfi1-/- mice succumb to low doses of this endotoxin that are tolerated by wildtype mice. We conclude that Gfi1 influences the differentiation of myeloid precursors into granulocytes or monocytes and acts in limiting the inflammatory immune response.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição , Transcrição Gênica/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem da Célula , Citocinas/biossíntese , Proteínas de Ligação a DNA/genética , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA