Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(1): 105-125, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38313853

RESUMO

BACKGROUND: Development of end-stage renal disease is predominantly attributed to diabetic nephropathy (DN). Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue. Nevertheless, the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain. AIM: To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism. METHODS: Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk. Subsequently, blood and urine indexes were assessed, along with examination of renal tissue pathology. Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, and Sirius-red. Additionally, high-glucose culturing was conducted on the RAW 264.7 cell line, treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h. In both in vivo and in vitro settings, quantification of inflammation factor levels was conducted using western blotting, real-time qPCR and ELISA. RESULTS: In db/db mice, administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis. Notably, we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin, along with a decrease in expressions of inflammatory cytokine-related factors. Furthermore, myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha, interleukin-6, and interluekin-1ß induced by high glucose in RAW 264.7 cells. Additionally, myricetin modulated the M1-type polarization of the RAW 264.7 cells. Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin. The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002. CONCLUSION: This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.

2.
Front Nutr ; 9: 853442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369091

RESUMO

Bioaffinity ultrafiltration combined with LC-Orbitrap-MS/MS was applied for the first time to achieve rapid screening and identification of tyrosinase inhibitory peptides (TYIPs) from grass carp scale gelatin hydrolysates. The binding mode of TYIPs with tyrosinase was investigated by molecular docking technology. The whitening effect of TYIPs was further studied by evaluating the tyrosinase activity and melanin content in mouse B16F10 cells. Four new TYIPs were screened from hydrolysates, among which DLGFLARGF showed the strongest tyrosinase inhibition with an IC50 value of 3.09 mM. Molecular docking showed that hydrogen bonds were the main driving force in the interaction between the peptide DLGFLARGF and tyrosinase. The addition of DLGFLARGF significantly inhibited the tyrosinase activity and melanin production of B16F10 melanoma cells. These results suggest that DLGFLARGF is a promising skin whitening agent for the treatment of potential pigment-related diseases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33013687

RESUMO

Background: Serum uric acid levels have been shown to be associated with increased risk of diabetes. However, it remains unclear whether uric acid-lowering therapy (ULT) is associated with improved glycemic status. This study aimed to summarize evidence from randomized controlled trials (RCTs) to investigate whether ULT reduces fasting blood glucose (FBG) and glycated hemoglobin A1c (HbA1c) levels. Methods: PubMed, Embase, and the Cochrane Library were searched from inception until April 10, 2019. Moreover, in order to maximize the search for articles on the same topic, the reference lists of included studies, relevant review articles and systematic reviews were reviewed. Parallel RCTs investigating the effect of ULT on FBG or HbA1c levels were considered for inclusion. An English language restriction was applied. Data were screened and extracted independently by two researchers. Meta-analyses were performed using random-effects models to calculate the weighted mean differences (WMDs) and 95% confidence intervals (CIs). Results: Four trials with 314 patients reported the effect of ULT with allopurinol on FBG and 2 trials with 141 patients reported the effect of ULT with allopurinol on HbA1c. Treatment with allopurinol resulted in a significant decrease in FBG (WMD: -0.61 mmol/L, 95% CI: -0.93 to -0.28), but only a trend of reduction in HbA1c (WMD: -0.47%, 95% CI: -1.16 to 0.22). Notably, the subgroup analyses showed that treatment with allopurinol was associated with reduced FBG levels in patients without diabetes (WMD: -0.60 mmol/L, 95% CI: -0.99 to -0.20), but not in patients with diabetes. In addition, the dose of allopurinol treatment ≥200 mg daily resulted in a reduction of FBG levels (WMD: -0.59 mmol/L, 95% CI: -0.95 to -0.23), whereas low-dose allopurinol (<200 mg daily) had no effect on FBG levels. Conclusions: The findings suggest that ULT with allopurinol may be effective at reducing glycemia, but such an improvement does not appear to be observed in patients with diabetes. The findings require confirmation in additional trials with larger sample sizes.


Assuntos
Alopurinol/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Supressores da Gota/farmacologia , Hemoglobinas Glicadas/análise , Humanos
4.
Cell Death Dis ; 11(6): 446, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522976

RESUMO

Cisplatin is one of the most potent chemotherapy drugs to treat cancers, but its clinical application remains limited due to severe nephrotoxicity. Several approaches have been developed to minimize such side effects, notably including chronotherapy, a well-known strategy based on the circadian clock. However, the component of the circadian clock machinery that particularly responses to the cisplatin stimulation remains unknown, including its functions in cisplatin-induced renal injury. In our present study, we demonstrated that Bmal1, as a key clock gene, was induced by the cisplatin stimulation in the mouse kidney and cultured human HK-2 renal cells. Gain- and loss-of-function studies indicated that Bmal1 facilitated cisplatin-induced renal injury both in vivo and in vitro, by aggravating the cell apoptotic process. More importantly, RNA-seq analysis revealed that Bmal1 triggered the expression of hallmark genes involved in renal hepatization, a critical event accompanied by the injury. At the molecular level, Bmal1 activated the transcription of hepatization-associated genes through direct recruitment to the E-box motifs of their promoters. Our findings suggest that Bmal1, a pivotal mediator induced renal injury in response to cisplatin treatment, and the therapeutic intervention targeting Bmal1 in the kidney may be a promising strategy to minimize the toxic side-effects of cisplatin in its clinical applications.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Cisplatino/efeitos adversos , Rim/lesões , Rim/patologia , Fatores de Transcrição ARNTL/metabolismo , Albuminas/genética , Albuminas/metabolismo , Animais , Linhagem Celular , Cisplatino/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Haptoglobinas/genética , Haptoglobinas/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Proteínas Quinases/metabolismo , Fatores de Tempo , Transferrina/genética , Transferrina/metabolismo
5.
Oncotarget ; 6(35): 37054-65, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26496027

RESUMO

Emerging evidence indicates that the islet fibrosis is attributable to activation of islet stellate cells (ISCs). In the present study, we compared the differences in biological activity of ISCs isolated from diabetic db/db and non-diabetic db/m mice, and the effects of the regenerating islet-derived protein 1 (Reg1) on ISC function. We showed that ISCs isolated from db/db mice were activated more rapidly than those from db/m mice during culture. Both Reg1 and its putative receptor exostosin-like glycosyltransferase 3 (EXTL3) were highly expressed by diabetic ISCs. Treatment with Reg1 inhibited migration, viability, and synthesis and secretion of Type I Collagen(Col-I), Type III Collagen(Col-III) and Fibronectin(FN) by diabetic ISCs, and this was associated with deactivation of the PI3K/Akt, MAPK/Erk1/2 signaling pathway in an EXTL3-dependent manner. In conclusion, our observations (i) confirmed the presence of fibrogenic stellate cells within pancreatic islets, which are prone to be activated in Type 2 diabetes, and (ii) revealed a potential role for Reg1 in preventing ISC activation.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Ilhotas Pancreáticas/citologia , Litostatina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Animais , Apoptose , Western Blotting , Movimento Celular , Proliferação de Células , Células Cultivadas , Imunofluorescência , Técnicas Imunoenzimáticas , Ilhotas Pancreáticas/metabolismo , Litostatina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA