Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602170

RESUMO

Statins are known to be anti-inflammatory, but the mechanism remains poorly understood. Here, we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the adenosine triphosphate (ATP) synthase in the inner mitochondrial membrane and changes the proton gradient in the mitochondria. This activates nuclear factor kappa-B (NF-κB) and Jmjd3 expression, which removes the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus lipopolysaccharide (M1), macrophages, either treated with statins in vitro or isolated from statin-fed mice, express lower levels proinflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL-4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.


Assuntos
Colesterol , Inibidores de Hidroximetilglutaril-CoA Redutases , Histona Desmetilases com o Domínio Jumonji , Macrófagos , Mitocôndrias , Regulação para Cima , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Colesterol/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos Endogâmicos C57BL , Masculino
2.
Science ; 377(6606): 666-669, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926054

RESUMO

Muscle stem cells (MuSCs) reside in a specialized niche that ensures their regenerative capacity. Although we know that innate immune cells infiltrate the niche in response to injury, it remains unclear how MuSCs adapt to this altered environment for initiating repair. Here, we demonstrate that inflammatory cytokine signaling from the regenerative niche impairs the ability of quiescent MuSCs to reenter the cell cycle. The histone H3 lysine 27 (H3K27) demethylase JMJD3, but not UTX, allowed MuSCs to overcome inhibitory inflammation signaling by removing trimethylated H3K27 (H3K27me3) marks at the Has2 locus to initiate production of hyaluronic acid, which in turn established an extracellular matrix competent for integrating signals that direct MuSCs to exit quiescence. Thus, JMJD3-driven hyaluronic acid synthesis plays a proregenerative role that allows MuSC adaptation to inflammation and the initiation of muscle repair.


Assuntos
Ácido Hialurônico , Inflamação , Histona Desmetilases com o Domínio Jumonji , Músculo Esquelético , Mioblastos Esqueléticos , Regeneração , Nicho de Células-Tronco , Animais , Ciclo Celular , Histonas , Humanos , Ácido Hialurônico/biossíntese , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-6 , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Mioblastos Esqueléticos/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 39(2): 137-149, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580573

RESUMO

Objective- During atherosclerosis, LDLs (low-density lipoproteins) accumulate in the arteries, where they become modified, aggregated, and retained. Such deposits of aggregated LDL (agLDL) can be recognized by macrophages, which attempt to digest and clear them. AgLDL catabolism promotes internalization of cholesterol and foam cell formation, which leads to the progression of atherosclerosis. Therapeutic blockade of this process may delay disease progression. When macrophages interact with agLDL in vitro, they form a novel extracellular, hydrolytic compartment-the lysosomal synapse (LS)-aided by local actin polymerization to digest agLDL. Here, we investigated the specific regulators involved in actin polymerization during the formation of the LS. Approach and Results- We demonstrate in vivo that atherosclerotic plaque macrophages contacting agLDL deposits polymerize actin and form a compartment strikingly similar to those made in vitro. Live cell imaging revealed that macrophage cortical F-actin depolymerization is required for actin polymerization to support the formation of the LS. This depolymerization is cofilin-1 dependent. Using siRNA-mediated silencing, pharmacological inhibition, genetic knockout, and stable overexpression, we elucidate key roles for Cdc42 Rho GTPase and GEF (guanine nucleotide exchange factor) Vav in promoting actin polymerization during the formation of the LS and exclude a role for Rac1. Conclusions- These results highlight critical roles for dynamic macrophage F-actin rearrangement and polymerization via cofilin-1, Vav, and Cdc42 in LS formation, catabolism of agLDL, and foam cell formation. These proteins might represent therapeutic targets to treat atherosclerotic disease.


Assuntos
Actinas/química , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Agregados Proteicos , Proteínas Proto-Oncogênicas c-vav/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Animais , Lipoproteínas LDL/química , Camundongos , Polimerização , Células RAW 264.7
4.
Autophagy ; 11(7): 1025-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26043942

RESUMO

A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.


Assuntos
Autofagia , Distonia/patologia , Células Receptoras Sensoriais/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Complexo Dinactina , Distonia/metabolismo , Distonina , Proteínas de Choque Térmico/metabolismo , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Proteína Sequestossoma-1
5.
PLoS One ; 9(11): e113789, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415591

RESUMO

ATP-binding cassette transporter A1 (ABCA1) plays an essential role in mediating cholesterol efflux to apolipoprotein A-I (apoA-I), a major housekeeping mechanism for cellular cholesterol homeostasis. After initial engagement with ABCA1, apoA-I directly interacts with the plasma membrane to acquire cholesterol. This apoA-I lipidation process is also known to require cellular signaling processes, presumably to support cholesterol trafficking to the plasma membrane. We report here that one of major signaling pathways in mammalian cells, Akt, is also involved. In several cell models that express ABCA1 including macrophages, pancreatic beta cells and hepatocytes, inhibition of Akt increases cholesterol efflux to apoA-I. Importantly, Akt inhibition has little effect on cells expressing non-functional mutant of ABCA1, implicating a specific role of Akt in ABCA1 function. Furthermore, we provide evidence that mTORC1, a major downstream target of Akt, is also a negative regulator of cholesterol efflux. In cells where mTORC1 is constitutively activated due to tuberous sclerosis complex 2 deletion, cholesterol efflux to apoA-I is no longer sensitive to Akt activity. This suggests that Akt suppresses cholesterol efflux through mTORC1 activation. Indeed, inhibition of mTORC1 by rapamycin or Torin-1 promotes cholesterol efflux. On the other hand, autophagy, one of the major pathways of cholesterol trafficking, is increased upon Akt inhibition. Furthermore, Akt inhibition disrupts lipid rafts, which is known to promote cholesterol efflux to apoA-I. We therefore conclude that Akt, through its downstream targets, mTORC1 and hence autophagy, negatively regulates cholesterol efflux to apoA-I.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteína A-I/genética , Transporte Biológico Ativo/genética , Linhagem Celular , Colesterol/genética , Cricetinae , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
6.
J Biol Chem ; 287(48): 40502-12, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23055522

RESUMO

BACKGROUND: ABCA1 is known to suppress proinflammatory cytokines. RESULTS: ABCA1 activates PKA and up-regulates anti-inflammatory cytokine IL-10. Elevated PKA transforms macrophages to M2-like phenotype. Disrupting lipid rafts by statins MCD, and filipin recuperates ABCA1 phenotype and likely functions downstream of ABCA1. CONCLUSION: By modulating cholesterol, ABCA1 activates PKA. This generates M2-like macrophages. SIGNIFICANCE: ABCA1 does not simply suppress inflammatory response. It promotes M2-like activation and facilitates resolution. Nonresolving inflammatory response from macrophages is a major characteristic of atherosclerosis. Macrophage ABCA1 has been previously shown to suppress the secretion of proinflammatory cytokine. In the present study, we demonstrate that ABCA1 also promotes the secretion of IL-10, an anti-inflammatory cytokine critical for inflammation resolution. ABCA1(+/+) bone marrow-derived macrophages secrete more IL-10 but less proinflammatory cytokines than ABCA1(-/-) bone marrow-derived macrophages, similar to alternatively activated (M2) macrophages. We present evidence that ABCA1 activates PKA and that this elevated PKA activity contributes to M2-like inflammatory response from ABCA1(+/+) bone marrow-derived macrophages. Furthermore, cholesterol lowering by statins, methyl-ß-cyclodextrin, or filipin also activates PKA and, consequently, transforms macrophages toward M2-like phenotype. Conversely, cholesterol enrichment suppresses PKA activity and promotes M1-like inflammatory response. As the primary function of ABCA1 is cholesterol removal, our results suggest that ABCA1 activates PKA by regulating cholesterol. Indeed, forced cholesterol enrichment in ABCA1-expressing macrophages suppresses PKA activation and elicits M1-like response. Collectively, these findings reveal a novel protective process by ABCA1-activated PKA in macrophages. They also suggest cholesterol lowering in extra-hepatic tissues by statins as an anti-inflammation strategy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Receptor 4 Toll-Like/imunologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/imunologia , Linhagem Celular , Colesterol/imunologia , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática , Humanos , Macrófagos/enzimologia , Camundongos , Camundongos Knockout , Estrutura Terciária de Proteína , Receptor 4 Toll-Like/genética
7.
Acta Biochim Biophys Sin (Shanghai) ; 44(2): 119-28, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22232299

RESUMO

The Niemann-Pick type C1 (NPC1) is located mainly in the membranes of the late endosome/lysosome and controls the intracellular cholesterol trafficking from the late endosome/lysosome to the plasma membrane. It has been reported that oxidized low-density lipoprotein (oxLDL) can up-regulate NPC1 expression. However, the detailed mechanisms are not fully understood. In this study, we investigated the effect of oxLDL stimulation on NPC1 expression in THP-1 macrophages. Our results showed that oxLDL up-regulated NPC1 expression at both mRNA and protein levels in a dose-dependent and time-dependent manner. In addition, oxLDL also induced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). Treatment with oxLDL significantly increased cyclooxygenase-2 (COX-2) mRNA and protein expression in the macrophages, and these increases were suppressed by the ERK1/2 inhibitor PD98059 or ERK1/2 small interfering RNA (siRNA) treatment. OxLDL up-regulated the expression of peroxisome proliferator-activated receptor α (PPARα) at the mRNA and protein levels, which could be abolished by COX-2 siRNA or COX-2 inhibitor NS398 treatment in these macrophages. OxLDL dramatically elevated cellular cholesterol efflux, which was abrogated by inhibiting ERK1/2 and/or COX-2. In addition, oxLDL-induced NPC1 expression and cellular cholesterol efflux were reversed by PPARα siRNA or GW6471, an antagonist of PPARα. Taken together, these results provide the evidence that oxLDL can up-regulate the expression of the NPC1 through ERK1/2/COX-2/PPARα-signaling pathway in macrophages.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Lipoproteínas LDL/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Sequência de Bases , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas LDL/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Biológicos , Proteína C1 de Niemann-Pick , Oxazóis/farmacologia , PPAR alfa/antagonistas & inibidores , PPAR alfa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Tirosina/análogos & derivados , Tirosina/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Am J Physiol Cell Physiol ; 301(4): C886-94, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697542

RESUMO

ATP-binding cassette protein A1 (ABCA1) is a key plasma membrane protein required for the efflux of cellular cholesterol to extracellular acceptors, particularly to apolipoprotein A-I (apoA-I). This process is essential to maintain cholesterol homeostasis in the body. The detailed molecular mechanisms, however, are still insufficiently understood. Also, the molecular identity of ABCA1, i.e., channel, pump, or flippase, remains unknown. In this study we analyzed extracellular ATP levels in the medium of ABCA1-expressing BHK cells and RAW macrophages and compared them to the medium of nonexpressing cells. We found that extracellular ATP concentrations are significantly elevated when cells express ABCA1. Importantly, a dysfunctional ABCA1 mutant (A937V), when expressed similarly as wild-type ABCA1, is unable to raise extracellular ATP concentration, which suggests a casual relationship between functional ABCA1 and elevated extracellular ATP. To explore the physiological role of extracellular ATP, we analyzed ABCA1-mediated cholesterol efflux under conditions where extracellular ATP levels were modulated. We found that increasing extracellular ATP within the physiological range, i.e., <µM, promotes cholesterol efflux to apoA-I. On the other hand, removing extracellular ATP, either by adding apyrase to the medium or by expressing a plasma membrane-bound ectonucleotidase, CD39, abolishes cholesterol efflux to apoA-I. On the basis of these results, we conclude that, through direct or indirect mechanisms, ABCA1 functions to raise ATP levels in the medium. This elevated extracellular ATP is required for ABCA1-mediated cholesterol efflux to apoA-I.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Linhagem Celular , Cricetinae , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mifepristona/farmacologia , Mutação
9.
J Biol Chem ; 286(5): 3370-8, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21106522

RESUMO

Macrophage foam cell is the predominant cell type in atherosclerotic lesions. Removal of excess cholesterol from macrophages thus offers effective protection against atherosclerosis. Here we report that a protein kinase A (PKA)-anchoring inhibitor, st-Ht31, induces robust cholesterol/phospholipid efflux, and ATP-binding cassette transporter A1 (ABCA1) greatly facilitates this process. Remarkably, we found that st-Ht31 completely reverses foam cell formation, and this process is ABCA1-dependent. The reversal is also accompanied by the restoration of well modulated inflammatory response to LPS. There is no detectable toxicity associated with st-Ht31, even when cells export up to 20% cellular cholesterol per hour. Using FRET-based PKA biosensors in live cells, we provide evidence that st-Ht31 drives cholesterol efflux by elevating PKA activity specifically in the cytoplasm. Furthermore, ABCA1 facilitates st-Ht31 uptake. This allows st-Ht31 to effectively remove cholesterol from ABCA1-expressing cells. We speculate that de-anchoring of PKA offers a novel therapeutic strategy to remove excess cholesterol from lipid-laden lesion macrophages.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Células Espumosas/efeitos dos fármacos , Proteínas/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Células Espumosas/citologia , Macrófagos/citologia , Camundongos
10.
J Lipid Res ; 50(3): 456-466, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18941142

RESUMO

ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-poor apolipoprotein A-I (apoA-I) and generates HDL. Here, we demonstrate that ABCA1 also directly mediates the production of apoA-I free microparticles. In baby hamster kidney (BHK) cells and RAW macrophages, ABCA1 expression led to lipid efflux in the absence of apoA-I and released large microparticles devoid of apoB and apoE. We provide evidence that these microparticles are an integral component of the classical cholesterol efflux pathway when apoA-I is present and accounted for approximately 30% of the total cholesterol released to the medium. Furthermore, microparticle release required similar ABCA1 activities as was required for HDL production. For instance, a nucleotide binding domain mutation in ABCA1 (A937V) that impaired HDL generation also abolished microparticle release. Similarly, inhibition of protein kinase A (PKA) prevented the release of both types of particles. Interestingly, physical modulation of membrane dynamics affected HDL and microparticle production, rigidifying the plasma membrane with wheat germ agglutinin inhibited HDL and microparticle release, whereas increasing the fluidity promoted the production of these particles. Given the established role of ABCA1 in expending nonraft or more fluid-like membrane domains, our results suggest that both HDL and microparticle release is favored by a more fluid plasma membrane. We speculate that ABCA1 enhances the dynamic movement of the plasma membrane, which is required for apoA-I lipidation and microparticle formation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Micropartículas Derivadas de Células/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular , Micropartículas Derivadas de Células/efeitos dos fármacos , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Fluidez de Membrana/fisiologia , Camundongos , Mifepristona/farmacologia , Proteínas Recombinantes/metabolismo , Aglutininas do Germe de Trigo/farmacologia
11.
J Biol Chem ; 281(47): 36091-101, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16984907

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is known to mediate cholesterol efflux to lipid-poor apolipoprotein A-I. In addition, ABCA1 has been shown to influence functions of the plasma membrane, such as endocytosis and phagocytosis. Here, we report that ABCA1 expression results in a significant redistribution of cholesterol and sphingomyelin from rafts to non-rafts. Caveolin, a raft/caveolae marker also redistributes from punctate caveolae-like structures to the general area of the plasma membrane upon ABCA1 expression. Furthermore, we observed significant reduction of Akt activation in ABCA1-expressing cells, consistent with raft disruption. Cholesterol content in the plasma membrane is, however, not altered. Moreover, we provide evidence that a non-functional ABCA1 with mutation in an ATP-binding domain, A937V, fails to redistribute cholesterol, sphingomyelin, or caveolin. A937V also fails to influence Akt activation. Finally, we show that apolipoprotein A-I preferentially associates with non-raft membranes in ABCA1-expressing cells. Our results thus demonstrate that ABCA1 causes a change in overall lipid packing of the plasma membrane, likely through its ATPase-related functions. Such reorganization by ABCA1 effectively expands the non-raft membrane fractions and, consequentially, pre-conditions cells for cholesterol efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Microdomínios da Membrana/química , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Caveolina 1/biossíntese , Membrana Celular/metabolismo , Colesterol/metabolismo , Cricetinae , Endocitose , Proteínas de Membrana Transportadoras/química , Microscopia de Fluorescência , Fosfolipídeos/química , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transferrina/metabolismo
12.
Mol Biol Cell ; 17(4): 1593-605, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16452637

RESUMO

Although cholesterol is synthesized in the endoplasmic reticulum (ER), compared with other cellular membranes, ER membrane has low cholesterol (3-6%). Most of the molecular machinery that regulates cellular cholesterol homeostasis also resides in the ER. Little is known about how cholesterol itself affects the ER membrane. Here, we demonstrate that acute cholesterol depletion in ER membranes impairs ER-to-Golgi transport of secretory membrane proteins. Cholesterol depletion is achieved by a brief inhibition of cholesterol synthesis with statins in cells grown in cholesterol-depleted medium. We provide evidence that secretory membrane proteins vesicular stomatitis virus glycoprotein and scavenger receptor A failed to be efficiently transported from the ER upon cholesterol depletion. Fluorescence photobleaching recovery experiments indicated that cholesterol depletion by statins leads to a severe loss of lateral mobility on the ER membrane of these transmembrane proteins, but not loss of mobility of proteins in the ER lumen. This impaired lateral mobility is correlated with impaired ER-to-Golgi transport. These results provide evidence for the first time that cholesterol is required in the ER membrane to maintain mobility of membrane proteins and thus protein secretion.


Assuntos
Colesterol/deficiência , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Complexo de Golgi/ultraestrutura , Hidroximetilglutaril-CoA Redutases/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Glicoproteínas de Membrana/metabolismo , Ácido Mevalônico/farmacologia , Transporte Proteico , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Proteínas do Envelope Viral/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 25(10): 2177-84, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16123327

RESUMO

OBJECTIVE: To determine whether cholesteryl ester transfer protein (CETP) directly mediates selective uptake of high-density lipoprotein (HDL)-cholesteryl ester (CE) by hepatocytes and to quantify the effects of the CETP inhibitor, torcetrapib, on this process. METHODS AND RESULTS: Using adenovirus-mediated CETP (ad-CETP) expression in primary mouse hepatocytes from either wild-type, low-density lipoprotein (LDL) receptor-/- or SR-BI-/- mice, we demonstrate that CETP enhances the selective accumulation of HDL-derived 3H-CE independently of known lipoprotein receptors. Addition of torcetrapib to the media did not impair the ability of cell-associated CETP to enhance CE uptake but reduced the ability of exogenously added CETP to increase selective uptake by up to 80%. When mice were infected with ad-CETP or ad-Luciferase and treated with daily intravenous injections of torcetrapib or vehicle, hepatic CETP expression resulted in a 50% decrease in HDL cholesterol in vehicle-treated animals versus a 33% decrease in HDL cholesterol in mice treated with torcetrapib. CONCLUSIONS: CETP mediates selective uptake of HDL-CE by hepatocytes by both torcetrapib-sensitive (exogenous CETP) and torcetrapib-insensitive (cell-associated CETP) mechanisms. Hepatic expression of CETP in vivo results in a marked decrease in cholesterol in particles in the HDL density range, consistent with a physiological role for hepatocyte CETP in selective uptake.


Assuntos
Proteínas de Transporte/metabolismo , Ésteres do Colesterol/metabolismo , Glicoproteínas/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/metabolismo , Adenoviridae/genética , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Antígenos CD36/genética , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Células Cultivadas , Proteínas de Transferência de Ésteres de Colesterol , Técnicas de Transferência de Genes , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/genética , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Quinolinas/farmacologia , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA