Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Mater Chem B ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757489

RESUMO

Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects in vitro. For in vivo experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.

2.
ACS Appl Mater Interfaces ; 16(17): 21653-21664, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644787

RESUMO

Analogous to thermal ablation techniques in clinical settings, cell necrosis induced during tumor photothermal therapy (PTT) can provoke an inflammatory response that is detrimental to the treatment of tumors. In this study, we employed a straightforward one-step liquid-phase reduction process to synthesize uniform RhRe nanozymes with an average hydrodynamic size of 41.7 nm for non-inflammatory photothermal therapy. The obtained RhRe nanozymes showed efficient near-infrared (NIR) light absorption for effective PTT, coupled with a remarkable capability to scavenge reactive oxygen species (ROS) for anti-inflammatory treatment. After laser irradiation, the 4T1 tumors were effectively ablated without obvious tumor recurrence within 14 days, along with no obvious increase in pro-inflammatory cytokine levels. Notably, these RhRe nanozymes demonstrated high biocompatibility with normal cells and tissues, both in vitro and in vivo, as evidenced by the lack of significant toxicity in female BALB/c mice treated with 10 mg/kg of RhRe nanozymes over a 14 day period. This research highlights RhRe alloy nanoparticles as bioactive nanozymes for non-inflammatory PTT in tumor therapy.


Assuntos
Ligas , Camundongos Endogâmicos BALB C , Terapia Fototérmica , Rênio , Ródio , Animais , Ródio/química , Ródio/farmacologia , Camundongos , Ligas/química , Ligas/farmacologia , Feminino , Rênio/química , Rênio/farmacologia , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo
3.
Adv Mater ; : e2309770, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447017

RESUMO

Percutaneous thermotherapy, a minimally invasive operational procedure, is employed in the ablation of deep tumor lesions by means of target-delivering heat. Conventional thermal ablation methods, such as radiofrequency or microwave ablation, to a certain extent, are subjected to extended ablation time as well as biosafety risks of unwanted overheating. Given its effectiveness and safety, percutaneous thermotherapy gains a fresh perspective, thanks to magnetic hyperthermia. In this respect, an injectable- and magnetic-hydrogel-construct-based thermal ablation agent is likely to be a candidate for the aforementioned clinical translation. Adopting a simple and environment-friendly strategy, a magnetic colloidal hydrogel injection is introduced by a binary system comprising super-paramagnetic Fe3O4 nanoparticles and gelatin nanoparticles. The colloidal hydrogel constructs, unlike conventional bulk hydrogel, can be easily extruded through a percutaneous needle and then self-heal in a reversible manner owing to the unique electrostatic cross-linking. The introduction of magnetic building blocks is exhibited with a rapid magnetothermal response to an alternating magnetic field. Such hydrogel injection is capable of generating heat without limitation of deep penetration. The materials achieve outstanding therapeutic results in mouse and rabbit models. These findings constitute a new class of locoregional interventional thermal therapies with minimal collateral damages.

4.
J Mater Chem B ; 11(41): 9777-9797, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749982

RESUMO

Owing to societal development and aging population, the impact of cancer on human health and quality of life has increased. Early detection and surgical treatment are the most effective approaches for most cancer patients. As the scope of conventional tumor resection is determined by auxiliary examination and surgeon experience, there is often insufficient recognition of tiny tumors. The ability to detect such tumors can be improved by using fluorescent tumor-specific probes for surgical navigation. This review mainly describes the design principles and mechanisms of activatable probes for the fluorescence imaging of tumors. This type of probe is nonfluorescent in normal tissue but exhibits obvious fluorescence emission upon encountering tumor-specific substrates, such as enzymes or bioactive molecules, or changes in the microenvironment, such as a low pH. In some cases, a single-factor response does not guarantee the effective fluorescence labeling of tumors. Therefore, two-factor-activatable fluorescence imaging probes that react with two specific factors in tumor cells have also been developed. Compared with single biomarker testing, the simultaneous monitoring of multiple biomarkers may provide additional insight into the role of these substances in cancer development and aid in improving the accuracy of early cancer diagnosis. Research and progress in this field can provide new methods for precision medicine and targeted therapy. The development of new approaches for early diagnosis and treatment can effectively improve the prognosis of cancer patients and help enhance their quality of life.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Humanos , Idoso , Qualidade de Vida , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Neoplasias/patologia , Corantes Fluorescentes/química , Imagem Óptica/métodos , Microambiente Tumoral
5.
J Nanobiotechnology ; 21(1): 203, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370105

RESUMO

Ferroptosis, a form of regulated cell death induced by excessive accumulation of reactive oxygen species and lipid peroxidation, has recently attracted extensive attention due to its ability to effectively suppress tumors and overcome drug resistance. Unlike previously reported metal nanomaterials that induce ferroptosis via the Fenton reaction, arsenene nanosheets can effectively deplete intracellular glutathione and then induce ferroptosis by inhibiting glutathione peroxidase 4. In this study, we designed target-modified arsenene nanosheets loaded with cisplatin (Her2-ANs@CDDP), which are capable of selective uptake by tumor cells. Her2-ANs@CDDP promotes both apoptosis and ferroptosis through a reciprocal cascade reaction between cisplatin and the carrier, respectively, and we demonstrate that it can significantly inhibit the activity of drug-resistant cells. Arsenene nanosheets kill drug-resistant tumor cells by inducing ferroptosis and restoring the sensitivity of drug-resistant cells to cisplatin. Cisplatin-loaded arsenene nanosheets can be prepared simply, and exert synergistic effects that overcome drug resistance. They show great potential for applications in the clinical treatment of chemotherapy-insensitive osteosarcoma, expanding the uses of arsenic in the treatment of solid tumors.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Ferroptose , Osteossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Glutationa/metabolismo , Linhagem Celular Tumoral
6.
Biomater Sci ; 11(16): 5361-5389, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381725

RESUMO

Gene editing has great potential in biomedical research including disease diagnosis and treatment. Clustered regularly interspaced short palindromic repeats (CRISPR) is the most straightforward and cost-effective method. The efficient and precise delivery of CRISPR can impact the specificity and efficacy of gene editing. In recent years, synthetic nanoparticles have been discovered as effective CRISPR/Cas9 delivery vehicles. We categorized synthetic nanoparticles for CRISPR/Cas9 delivery and discribed their advantages and disadvantages. Further, the building blocks of different kinds of nanoparticles and their applications in cells/tissues, cancer and other diseases were described in detail. Finally, the challenges encountered in the clinical application of CRISPR/Cas9 delivery materials were discussed, and potential solutions were provided regarding efficiency and biosafety issues.


Assuntos
Nanopartículas , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Neoplasias/genética
7.
Chem Soc Rev ; 52(8): 2833-2865, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37016963

RESUMO

Metallenes, atomically thin-layered materials composed of coordination-deficient metal atoms, have emerged as a new category of two-dimensional materials. Metallenes exhibit exciting properties with a fusion of atom economy, ultrathin structure, photonic properties, and catalytic activity, which make them intriguing for a wide range of applications in biomedicine. The development of biomedical applications of metallenes is in its infancy yet fast-growing. In this review, after a brief introduction of the definition, structures, properties, and classification of metallenes, we outline two common synthesis strategies and identify their shortcomings. Then, we comprehensively discuss the biological effects of metallenes, such as nano-biointeractions and signaling pathway regulation. We also highlight their recent advances in biomedical applications, including antitumor, biosensing, bioimaging, antibacterial, and anti-inflammation. Finally, we provide personal perspectives on remaining challenges and future opportunities for the biomedical applications of metallenes.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Metais/química , Antibacterianos
8.
Adv Healthc Mater ; 12(17): e2202947, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829272

RESUMO

Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/química , Micro-Ondas , Radicais Livres/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio , Oxigênio , Linhagem Celular Tumoral , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 15(9): 11474-11484, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36702809

RESUMO

In response to diffused ionizing radiation damage throughout the body caused by nuclear leaks and inaccurate radiotherapy, radioprotectants with considerable free radical scavenging capacities, along with negligible adverse effects, are highly regarded. Herein, unlike being performed as toxic chemotherapeutic drug candidates, molybdenum-based polyoxometalate nanoclusters (Mo-POM NCs) were developed as a non-toxic potent radioprotectant with impressive free radical scavenging capacities for ionizing radiation protection. In comparison to the clinically used radioprotectant drug amifostine (AM), the as-prepared Mo-POM NCs exhibited effective shielding capacity by virtue of their antioxidant properties resulting from a valence shift of molybdenum ions, alleviating not only ionizing radiation-induced DNA damage but also disruption of the radiation-sensitive hematopoietic system. More encouragingly, without trouble with long-term retention in the body, ultra-small sized Mo-POM NCs prepared by the mimetic Folin-Ciocalteu assay can be removed from the body through the renal-urinary pathway and the hepato-enteral excretory system after completing the mission of radiation protection. This work broadened the biological applications of metal-based POM chemotherapeutic drugs to act as a neozoic radioprotectant.


Assuntos
Protetores contra Radiação , Protetores contra Radiação/farmacologia , Molibdênio , Radiação Ionizante , Radicais Livres
10.
Biomaterials ; 292: 121917, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470160

RESUMO

Photothermal therapy (PTT), like other clinical translational tumor ablation techniques, requires a temperature increase above 50 °C to cause necrosis and death of tumor cells. Although the tumor can be eliminated rapidly by PTT, the inflammatory response is triggered by the large amounts of released reactive oxygen species (ROS). Therefore, liquid exfoliation was used to create ultrasmall zirconium carbide nanodots (NDs) with an average diameter of approximately 4.5 nm as noninflammatory/anti-inflammatory photosensitizers for PTT of glioma. Ultrasmall ZrC NDs showed excellent photothermal stability and biocompatibility but no obvious toxicity. Moreover, the ultrasmall ZrC NDs effectively ablated glioma at relatively low concentrations and inhibited tumor migration and proliferation in vitro and in vivo. Furthermore, the excellent ROS-scavenging ability of ultrasmall ZrC NDs suppressed the inflammatory response to PTT. Intriguingly, we found that ZrC had the capability of performing CT imaging. We demonstrated that the ultrasmall ZrC NDs created in this study could effectively and safely treat glioma without inflammation.


Assuntos
Glioma , Nanopartículas , Humanos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Nanopartículas/uso terapêutico , Fototerapia , Espécies Reativas de Oxigênio , Zircônio/uso terapêutico
11.
Nanoscale ; 14(40): 14935-14949, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36196973

RESUMO

Glioma is characterized by highly invasive, progressive, and lethal features. In addition, conventional treatments have been poorly effective in treating glioma. To overcome this challenge, synergistic therapies combining radiotherapy (RT) with photothermal therapy (PTT) have been proposed and extensively explored as a highly feasible cancer treatment strategy. Herein, ultrasmall zirconium carbide (ZrC) nanodots were successfully synthesized with high near-infrared absorption and strong photon attenuation for synergistic PTT-RT of glioma. ZrC-PVP nanodots with an average size of approximately 4.36 nm were prepared by the liquid exfoliation method and modified with the surfactant polyvinylpyrrolidone (PVP), with a satisfactory absorption and photothermal conversion efficiency (53.4%) in the near-infrared region. Furthermore, ZrC-PVP nanodots can also act as radiosensitizers to kill residual tumor cells after mild PTT due to their excellent photon attenuating ability, thus achieving a significant synergistic therapeutic effect by combining RT and PTT. Most importantly, both in vitro and in vivo experimental results further validate the high biosafety of ZrC-PVP NDs at the injected dose. This work systematically evaluates the feasibility of ZrC-PVP NDs for glioma treatment and provides evidence of the application of zirconium-based nanomaterials in photothermal radiotherapy.


Assuntos
Glioma , Fototerapia , Humanos , Glioma/terapia , Povidona/farmacologia , Tensoativos , Zircônio/farmacologia
12.
ACS Nano ; 16(9): 15026-15041, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36037406

RESUMO

The exciting success of NBTXR3 in the clinic has triggered a tumult of activities in the design and development of hafnium-based nanoparticles. However, due to the concerns of nondegradation and limited functions, the biomedical applications of Hf-based nanoparticles mainly focus on tumors. Herein, tannic acid capped hafnium disulfide (HfS2@TA) nanosheets, a 2D atomic crystal of hafnium-based materials prepared by liquid-phase exfoliation, were explored as high-performance anti-inflammatory nanoagents for the targeted therapy of inflammatory bowel disease (IBD). Benefiting from the transformation of the S2-/S6+ valence state and huge specific surface area, the obtained HfS2@TA nanosheets were not only capable of effectively eliminating reactive oxygen species/reactive nitrogen species and downregulating pro-inflammatory factors but also could be excreted via kidney and hepatointestinal systems. Unexpectedly, HfS2@TA maintained excellent targeting capability to an inflamed colon even in the harsh digestive tract environment, mainly attributed to the electrostatic interactions between negatively charged tannic acid and positively charged inflamed epithelium. Encouragingly, upon oral or intravenous administration, HfS2@TA quickly inhibited inflammation and repaired the intestinal mucosa barrier in both dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid induced IBD models. This work demonstrated that ultrathin HfS2@TA atomic crystals with enhanced colon accumulation were promising for the targeted therapy of IBD.


Assuntos
Háfnio , Doenças Inflamatórias Intestinais , Anti-Inflamatórios/uso terapêutico , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Sulfato de Dextrana/uso terapêutico , Dissulfetos/farmacologia , Háfnio/farmacologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio/metabolismo , Taninos/farmacologia , Taninos/uso terapêutico , Ácido Trinitrobenzenossulfônico/farmacologia , Ácido Trinitrobenzenossulfônico/uso terapêutico
13.
J Nanobiotechnology ; 20(1): 381, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986283

RESUMO

Bioactive materials have been extensively developed for the adjuvant therapy of cancer. However, few materials can meet the requirements for the postoperative resection of hepatocellular carcinoma (HCC) due to massive bleeding and high recurrence. In particular, combination therapy for HCC has been highly recommended in clinical practice, including surgical resection, interventional therapy, ablation therapy and chemotherapy. Herein, an injectable magnetic colloidal gel (MCG) was developed by controllable electrostatic attraction between clinically available magnetic montmorillonites and amphoteric gelatin nanoparticles. The optimized MCG exhibited an effective magnetic heating effect, remarkable rheological properties, and high gel network stability, realizing the synergistic treatment of postoperative HCC by stimuli-responsive drug delivery, hemostasis and magnetic hyperthermia. Furthermore, a minimal invasive MCG-induced interventional magnetic hyperthermia therapy (MHT) under ultrasound guidance was realized on hepatic tumor rabbits, providing an alternative therapeutics to treat the postoperative recurrence. Overall, MCG is a clinically available injectable formulation for adjuvant therapy after HCC surgical resection.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Animais , Bentonita/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fenômenos Magnéticos , Coelhos
14.
J Nanobiotechnology ; 20(1): 215, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524259

RESUMO

Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradiated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins (HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflammation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by glycolysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.


Assuntos
Diclofenaco , Ablação por Ultrassom Focalizado de Alta Intensidade , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Glicólise , Humanos , Inflamação/tratamento farmacológico , Mentol
15.
J Mater Chem B ; 10(18): 3452-3461, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35395666

RESUMO

Photothermal-enhanced chemodynamic therapy (CDT) has been attracting increasing attention for effective tumour treatment. Nevertheless, even though Mn-based nanostructures are promising CDT agents, their photothermal conversion capacities are not good enough for an ideal combination therapy. In this work, a bifunctional Bi2-xMnxO3 nanoplatform was developed, with tumour microenvironment (TME)-triggered photothermal therapy (PTT)-enhanced CDT, for a collaborative therapy for tumours. The doping of a small amount of Bi tuned the photothermal and CDT performance of Bi2-xMnxO3, thus promoting the photothermal conversion ability as well as accelerating the ˙OH generation. The existence of reductive Mn4+ could disrupt the internal tumour redox balance by enhancing glutathione (GSH) consumption to improve the CDT effect. Meanwhile, the mild photothermal effect could accelerate the depletion of GSH and the generation of ˙OH in the tumour region after laser irradiation, thus promoting the CDT effect. This manganese-based nanoplatform provides a good strategy for tumour therapy via TME-mediated PTT-enhanced CDT.


Assuntos
Compostos de Manganês/química , Nanosferas , Neoplasias , Glutationa , Humanos , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Microambiente Tumoral
16.
ACS Nano ; 16(3): 4917-4929, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35274935

RESUMO

In this work, a fluoroquinolone antibiotic drug (sparfloxacin (SP)) was selected as a chemotherapy drug and photosensitizer for combined therapy. A facile chemical process was developed to incorporate SP and upconversion nanoparticles (UCNPs) into the thermally sensitive amphiphilic polymer polyethylene glycol-poly(2-hexoxy-2-oxo-1,3,2-dioxaphospholane). In vitro and in vivo experiments showed that 60% of the SP molecules can be released from the micelles of thermal-sensitive polymers using a 1 W cm-2 980 nm laser, and this successfully inhibits cell migration and metastasis by inhibiting type II topoisomerases in nuclei. Additionally, intracellular metal ions were chelated by SP to induce cancer cell apoptosis by decreasing the activity of superoxide dismutase and catalase. In particular, the fluoroquinolone molecules produced singlet oxygen (1O2) to kill cancer cells, and this was triggered by UCNPs when irradiation was performed with a 980 nm laser. Overall, SP retained a weak chemotherapeutic effect, achieved enhanced photosensitizer-like effects, and was able to repurpose old drugs to elevate the therapeutic efficacy against cancer, increase the specificity for suppressing tumor migration and proliferation, and enhance apoptosis.


Assuntos
Nanopartículas , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Fluoroquinolonas/farmacologia , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fototerapia , Polímeros/química
17.
Adv Healthc Mater ; 11(1): e2102080, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655464

RESUMO

Although T cell centered immune checkpoint blockade (ICB) therapies have shown unprecedented success in various cancer types, only a minority of patients benefit from these treatments due to the lack of neoantigen burden and exhaustion of tumor-infiltrating immune stimulating cells. Inspired by the crucial role of NK cell based immunity and potential immunostimulating effect of chemotherapeutic drugs, the therapeutic efficiency on tumor inhibition through combination of doxorubicin (DOX) and blockade of TIGIT (T-cell Ig and ITIM domain), a coinhibitory receptor expressed by both NK and T cells, in a matrix metalloproteinase 2 (MMP-2)-degradable hydrogel is thoroughly evaluated in this study. Due to the distinct release kinetics from destructed framework of hydrogels, the differentially released DOX and anti-TIGIT monoclonal antibody (aTIGIT) molecules can elicit immunogenic tumor microenvironment and reverse the exhaustion of NK and effector T cells to realize not only durable localized tumor inhibition but also systemic and long-lasting immune memory responses. Thus, this work pioneers the union of chemotherapeutic drugs and NK cell centered ICB therapies for activating cascade-like antitumor immune responses through eliciting immunogenic tumor microenvironment and boosting both innate and adaptive immunity.


Assuntos
Metaloproteinase 2 da Matriz , Receptores Imunológicos , Imunidade Adaptativa , Doxorrubicina/farmacologia , Humanos , Células Matadoras Naturais
18.
Mater Horiz ; 8(8): 2216-2229, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846426

RESUMO

Ferroptosis, a newly recognized form of non-apoptotic cell death, has recently been introduced for effective cancer therapy. The reported ferroptosis-inducing nanomaterials mainly consisted of metal-based components. Herein, we designed an inorganic metal-free nanoplatform, PSMA-targeted arsenic nanosheets (PMANs), which simultaneously increased glutathione (GSH) consumption, suppressed solute carrier family 7 member 11 (SLC7A11) and glutathione-dependent peroxidase 4 (GPX4) expression, and promoted the generation of reactive oxygen species (ROS) and lipid peroxides (LPO). In addition, owing to the large surface area, PMANs efficiently transported doxorubicin (DOX) to prostate cancer for synergistic therapy. Surprisingly, we found that PMANs could sensitize prostate cancer cells to DOX through downregulating the expression of ataxia telangiectasia mutated (ATM), which further augmented the GPX4 downregulation-mediated ferroptotic tumoricidal effect. Given that arsenic trioxide has been routinely and successfully used in the clinical treatment of leukemia for a long time, we anticipate that PMANs will offer a promising strategy for prostate cancer therapy.


Assuntos
Arsênio , Ataxia Telangiectasia , Ferroptose , Neoplasias da Próstata , Arsênio/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Glutationa/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico
19.
ACS Appl Mater Interfaces ; 13(39): 46343-46352, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34558285

RESUMO

Indium, a low melting point metal, is well-known for constructing eutectic gallium-indium liquid metal. However, unlike liquid metal nanoparticles, the biomedical applications of metallic indium nanoparticles (In NPs) remain in their infancy. Herein, an ultrasound-assisted liquid-reduction synthesis strategy was developed to prepare PEGylated In NPs, which were then used as a high-performance contrast agent for enhancing multiwavelength photoacoustic imaging and second near-infrared (NIR-II) photothermal therapy of the 4T1 breast tumor. The obtained In NPs depicted remarkable optical absorption from the first near-infrared (NIR-I) to NIR-II region and a high photothermal conversion efficiency of 41.3% at 1064 nm, higher than the majority of conventional NIR-II photothermal agents. Upon injection into the tumor, the photoacoustic intensities of the tumor section post-injection were obviously increased by 2.59-, 2.62-, and 4.27-fold of those of pre-injection by using excitation wavelengths of 750, 808, and 970 nm, respectively, depicting an excellent multiwavelength contrast capability of photoacoustic imaging. In addition, efficient ablation of the 4T1 tumor was achieved through the photothermal performance of PEGylated In NPs under NIR-II laser irradiation. Importantly, as the widely used element in the clinic, In NPs were highly biocompatible in vitro and in vivo. Therefore, this work pioneered the biomedical applications of PEGylated In NPs for cancer diagnosis and treatment.


Assuntos
Antineoplásicos/uso terapêutico , Meios de Contraste/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Terapia Combinada/métodos , Meios de Contraste/química , Meios de Contraste/efeitos da radiação , Meios de Contraste/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Índio/química , Índio/efeitos da radiação , Índio/uso terapêutico , Índio/toxicidade , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos BALB C , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade
20.
Small ; 17(33): e2101155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34269521

RESUMO

Manipulation of CRISPR delivery for stimuli-responsive gene editing is crucial for cancer therapeutics through maximizing efficacy and minimizing side-effects. However, realizing controlled gene editing for synergistic combination therapy remains a key challenge. Here, a near-infrared (NIR) light-triggered thermo-responsive copper sulfide (CuS) multifunctional nanotherapeutic platform is constructed to achieve controlled release of CRISPR-Cas9 ribonucleoprotein (RNP) and doxorubicin for tumor synergistic combination therapy involving in gene therapy, mild-photothermal therapy (PTT), and chemotherapy. The semiconductor CuS serves as a "photothermal converter" and can stably convert NIR light (808 nm) into local thermal effect to provide photothermal stimulation. The double-strand formed between CuS nanoparticle-linked DNA fragments and single-guide RNA is employed as a controlled element in response to photothermal stimulation for controlled gene editing and drug release. Hsp90α, one subunit of heat shock protein 90 (Hsp90), is targeted by Cas9 RNP to reduce tumor heat tolerance for enhanced mild-PTT effects (≈43 °C). Significant synergistic therapy efficacy can be observed by twice NIR light irradiation both in vitro and in vivo, compared to PTT alone. Overall, this exogenously controlled method provides a versatile strategy for controlled gene editing and drug release with potentially synergistic combination therapy.


Assuntos
Nanopartículas , Fototerapia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cobre , Doxorrubicina , Terapia Fototérmica , Ribonucleoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA