Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Food Microbiol ; 418: 110741, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733636

RESUMO

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.

2.
Int J Food Microbiol ; 410: 110514, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38070224

RESUMO

Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 µL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 µL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.


Assuntos
Óleos Voláteis , Origanum , Antifúngicos/farmacologia , Antifúngicos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Aspergillus flavus , Origanum/química , Triticum , Monoterpenos/química
3.
Appl Microbiol Biotechnol ; 107(23): 7213-7230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733053

RESUMO

Plant volatile compounds have great potential for preventing and controlling fungal spoilage in post-harvest grains. Recently, we have reported the antifungal effects of trans-anethole, the main volatile constituent of the Illicium verum fruit, on Aspergillus flavus. In this study, the inhibitory mechanisms of trans-anethole against the growth of A. flavus mycelia were investigated using transcriptomic and biochemical analyses. Biochemical and transcriptomic changes in A. flavus mycelia were evaluated after exposure to 0.2 µL/mL trans-anethole. Scanning electron microscopy showed that trans-anethole treatment resulted in the surface wrinkling of A. flavus mycelia, and calcofluor white staining confirmed that trans-anethole treatment disrupted the mycelial cell wall structure. Annexin V-fluorescein isothiocyanate/propidium iodide double staining suggested that trans-anethole induced apoptosis in A. flavus mycelia. Reduced mitochondrial membrane potential and DNA damage were observed in trans-anethole-treated A. flavus mycelia using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine and 4',6-diamidino-2-phenylindole staining, respectively. 2',7'- Dichloro-dihydro-fluorescein diacetate staining and biochemical assays demonstrated that trans-anethole treatment cause the accumulation of reactive oxygen species in the A. flavus mycelia. Transcriptome results showed that 1673 genes were differentially expressed in A. flavus mycelia exposed to trans-anethole, which were mainly associated with multidrug transport, oxidative phosphorylation, citric acid cycle, ribosomes, and cyclic adenosine monophosphate signaling. We propose that trans-anethole can inhibit the growth of A. flavus mycelia by disrupting the cell wall structure, blocking the multidrug transport process, disturbing the citric acid cycle, and inducing apoptosis. This study provides new insights into the inhibitory mechanism of trans-anethole on A. flavus mycelia and will be helpful for the development of natural fungicides. KEY POINTS: • Biochemical analyses of A. flavus mycelia exposed to trans-anethole were performed • Transcriptomic changes in trans-anethole-treated A. flavus mycelia were analyzed • An inhibitory mechanism of trans-anethole on the growth of A. flavus mycelia was proposed.


Assuntos
Derivados de Alilbenzenos , Antifúngicos , Antifúngicos/química , Aspergillus flavus , Transcriptoma , Derivados de Alilbenzenos/metabolismo , Derivados de Alilbenzenos/farmacologia
4.
Front Oncol ; 13: 992096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814812

RESUMO

Background and objective: For patients with advanced colorectal liver metastases (CRLMs) receiving first-line anti-angiogenic therapy, an accurate, rapid and noninvasive indicator is urgently needed to predict its efficacy. In previous studies, dynamic radiomics predicted more accurately than conventional radiomics. Therefore, it is necessary to establish a dynamic radiomics efficacy prediction model for antiangiogenic therapy to provide more accurate guidance for clinical diagnosis and treatment decisions. Methods: In this study, we use dynamic radiomics feature extraction method that extracts static features using tomographic images of different sequences of the same patient and then quantifies them into new dynamic features for the prediction of treatmentefficacy. In this retrospective study, we collected 76 patients who were diagnosed with unresectable CRLM between June 2016 and June 2021 in the First Hospital of China Medical University. All patients received standard treatment regimen of bevacizumab combined with chemotherapy in the first-line treatment, and contrast-enhanced abdominal CT (CECT) scans were performed before treatment. Patients with multiple primary lesions as well as missing clinical or imaging information were excluded. Area Under Curve (AUC) and accuracy were used to evaluate model performance. Regions of interest (ROIs) were independently delineated by two radiologists to extract radiomics features. Three machine learning algorithms were used to construct two scores based on the best response and progression-free survival (PFS). Results: For the task that predict the best response patients will achieve after treatment, by using ROC curve analysis, it can be seen that the relative change rate (RCR) feature performed best among all features and best in linear discriminantanalysis (AUC: 0.945 and accuracy: 0.855). In terms of predicting PFS, the Kaplan-Meier plots suggested that the score constructed using the RCR features could significantly distinguish patients with good response from those with poor response (Two-sided P<0.0001 for survival analysis). Conclusions: This study demonstrates that the application of dynamic radiomics features can better predict the efficacy of CRLM patients receiving antiangiogenic therapy compared with conventional radiomics features. It allows patients to have a more accurate assessment of the effect of medical treatment before receiving treatment, and this assessment method is noninvasive, rapid, and less expensive. Dynamic radiomics model provides stronger guidance for the selection of treatment options and precision medicine.

5.
Appl Microbiol Biotechnol ; 106(19-20): 6625-6640, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36097174

RESUMO

Biogenic volatile organic compounds hold remarkable potential for controlling fungal decay in agro- and food products. Recently, we reported that linalool, the major volatile component of the Zanthoxylum schinifolium pericarp, showed great potential as a biofumigant to control Aspergillus flavus growth in postharvest grains. In this study, the inhibitory effects of linalool on A. flavus growth in stored grains and its underlying mechanism were investigated through transcriptomic and biochemical analyses. Linalool vapor at 800 µL/L can effectively prevent A. flavus growth in 22% moisture wheat grains. Linalool at 2 µL/mL completely inhibited the germination of A. flavus spores, and 10 µL/mL caused spore death. Scanning electron microscopy revealed that linalool treatment caused wrinkling and spore breakage. Transcriptomics showed that 3806 genes were significantly differentially expressed in A. flavus spores exposed to 2 µL/mL linalool, predominantly showing enrichment regarding the ribosome, DNA replication, glutathione metabolism, peroxisome, and MAPK signaling pathways. Flow cytometry showed that linalool treatment caused hyperpolarization of mitochondrial membrane potential. 4,6-Diamidino-2-phenylindole staining indicated that linalool caused DNA fragmentation in A. flavus spores, and monodansylcadaverine staining confirmed that linalool induced autophagy in A. flavus spores. We thus propose that linalool can damage the plasma membrane, cause mitochondrial dysfunction and DNA damage, and induce autophagy in A. flavus spores. These findings considerably improve our understanding of the mechanisms underlying the inhibitory effects of linalool on A. flavus, which is crucial regarding the development of applications to prevent postharvest grain spoilage due to A. flavus infestations. KEY POINTS: • The inhibitory potency of linalool on A. flavus spore germination was determined. • Transcriptomic analyses were performed to identify differentially expressed genes of A. flavus exposed to linalool. • A functional mechanism underlying the inhibitory effects of linalool on A. flavus spore germination is proposed.


Assuntos
Aspergillus flavus , Compostos Orgânicos Voláteis , Monoterpenos Acíclicos , Antifúngicos/farmacologia , Glutationa/metabolismo , Esporos Fúngicos , Compostos Orgânicos Voláteis/metabolismo
6.
Appl Microbiol Biotechnol ; 106(5-6): 2091-2106, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179628

RESUMO

The exploitation of plant volatile organic compounds as biofumigants to control postharvest decaying of agro-products has received considerable research attention. Our previous study reported that 1-nonanol, the main constituent of cereal volatiles, can inhibit Aspergillus flavus growth and has the potential as a biofumigant to control the fungal spoilage of cereal grains. However, the antifungal mechanism of 1-nonanol against A. flavus is still unclear at the molecular level. In this study, the minimum inhibitory concentration and minimum fungicidal concentration of 1-nonanol against A. flavus spores were 2 and 4 µL/mL, respectively. Scanning electron microscopy revealed that the 1-nonanol can distort the morphology of A. flavus spore. Annexin V-FITC/PI double staining showed that 1-nonanol induced phosphatidylserine eversion and increased membrane permeability of A. flavus spores. Transcriptional profile analysis showed that 1-nonanol treatment mainly affected the expression of genes related to membrane damage, oxidative phosphorylation, blockage of DNA replication, and autophagy in A. flavus spores. Flow cytometry analysis showed that 1-nonanol treatment caused hyperpolarization of mitochondrial membrane potential and accumulation of reactive oxygen species in A. flavus spores. 4',6-diamidino-2-phenylindole staining showed that treatment with 1-nonanol destroyed the DNA. Biochemical analysis results confirmed that 1-nonanol exerted destructive effects on A. flavus spores by decreasing intracellular adenosine triphosphate content, reducing mitochondrial ATPase activity, accumulating hydrogen peroxide and superoxide anions, and increasing catalase and superoxide dismutase enzyme activities. This study provides new insights into the antifungal mechanisms of 1-nonanol against A. flavus. KEY POINTS: • 1-Nonanol treatment resulted in abnormal morphology of A. flavus spores. • 1-Nonanol affects the expression of key growth-related genes of A. flavus. • The apoptosis of A. favus spores were induced after exposed to 1-nonanol.


Assuntos
Aspergillus flavus , Transcriptoma , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergillus flavus/metabolismo , Álcoois Graxos/metabolismo , Esporos Fúngicos
7.
Appl Microbiol Biotechnol ; 105(18): 6871-6886, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34477940

RESUMO

Aspergillus flavus is a notorious saprophytic fungus that compromises the quantity and quality of postharvest grains and produces carcinogenic aflatoxins. The natural compound hexanal disrupts cell membrane synthesis and mitochondrial function and induces apoptosis in A. flavus; here, we investigated the molecular mechanisms underlying these effects. The minimum inhibition and fungicidal concentration (MIC and MFC) of hexanal against A. flavus spores were 3.2 and 9.6 µL/mL, respectively. Hexanal exposure resulted in abnormal spore morphology and early spore apoptosis. These changes were accompanied by increased reactive oxygen species production, reduced mitochondrial membrane potential, and DNA fragmentation. Transcriptomic analysis revealed that hexanal treatment greatly altered the metabolism of A. flavus spores, including membrane permeability, mitochondrial function, energy metabolism, DNA replication, oxidative stress, and autophagy. This study provides novel insights into the mechanism underlying the antifungal activity of hexanal, suggesting that hexanal can be used an anti-A. flavus agent for agricultural applications. KEY POINTS: • Hexanal exposure resulted in abnormal spore morphology. • The apoptotic characteristics of A. flavus were induced after hexanal treatment. • Hexanal could change the expression of key A. flavus growth-related genes.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Aldeídos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Apoptose , Mitocôndrias , Esporos Fúngicos/metabolismo
8.
J Pain Res ; 14: 1699-1706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140806

RESUMO

PURPOSE: In patients requiring percutaneous kyphoplasty (PKP) for painful cervical spine metastases (PCSMs), the surgical approach is of utmost importance. Anterolateral and transoral routes are generally used at present, whereas PKP as well as percutaneous pediculoplasty (PPP) via posterolateral transpedicular approach (PTPA) has yet to be pursued in the treatment of PCSMs. The study was designed to evaluate safety and efficacy of PKP procedures combined with PPP via PTPA as treatment of PCSMs. PATIENTS AND METHODS: The patients with PCSMs were enrolled and housed in a database. The pain intensity of enrolled patients was gauged by Visual Analog Scale (VAS), ranging from 0 (none) to 10 (extreme). After preprocedural imaging assessment, combined PKP/PPP via PTPA was performed under the guidance of CT and fluoroscopic monitoring. Postprocedural VAS scores, complications, cement dosage, and hospitalization were recorded in the database for analysis. All cases were followed up for 6 months. RESULTS: Adult enrollees (7 women, 4 men) with PCSMs successfully underwent PKP/PPP via PTPA between February 2019 and January 2020, injected with 3.7±0.7 mL (range, 2.5-4.8 mL) of cement on average. Other than a single instance of asymptomatic cement leakage into paravertebral soft tissues, no complications ensued. Significant analgesic effects observed 24 hours after procedures were sustained for up to 6 months in follow-up surveys. Postprocedural hospitalizations were as brief as 2.2±0.8 days. CONCLUSION: Combined PKP/PPP via PTPA is safe and effective as treatment of PCSMs, enabling quick pain relief and patient recovery.

9.
Mol Med Rep ; 18(2): 2061-2067, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29956789

RESUMO

The present study investigated the role of tissue inhibitor of matrix metalloproteinase­3 (TIMP­3) in regulating the proliferation, migration, apoptosis and activity of matrix metalloproteinase (MMP)­2 and ­9, during the development of an atherosclerotic abdominal artery aneurysm (AAA). Experiments were conducted using rabbit AAA neck (NA) smooth muscle cells (SMCs), to investigate the potential for TIMP­3 to be used as a novel stent coating in preventing aortic dilation adjacent to the AAA. The atherosclerotic AAA model was induced in New Zealand white rabbits via a 6­week high­cholesterol diet, followed by incubation of the targeted aortic region with elastase. SMCs were isolated from the aorta adjacent to the aneurysm 30 days after AAA model induction, and stimulated with 3, 10, 30 or 100 ng/ml TIMP­3. Cell proliferation was investigated using Cell Counting Kit­8 reagent, migration was examined using a Boyden chamber assay and apoptotic rate was analyzed using the Annexin V­fluorescein isothiocyanate Apoptosis Detection kit. Gelatin zymography and ELISA were used to measure the activity of MMP­2 and MMP­9, and the expression of tumor necrosis factor­α (TNF­α), respectively. Analysis of cell proliferation indicated that 10, 30 and 100 ng/ml TIMP­3 reduced cell viability. Cell migration was decreased by 10, 30 and 100 ng/ml TIMP­3. MMP­2 activity was inhibited by 10, 30 and 100 ng/ml TIMP­3, and MMP­9 activity was suppressed by 30 and 100 ng/ml TIMP­3. The protein levels of secreted TNF­α were reduced by 10, 30 and 100 ng/ml TIMP­3. The present study demonstrated the ability of 30 and 100 ng/ml TIMP­3 to attenuate migration and proliferation, and to inhibit the activity of MMP­2, MMP­9 and TNF­α secretion of NA SMCs. In conclusion, TIMP­3 may be considered a potential therapeutic drug for use in a novel drug­eluting stent, to attenuate the progressive dilation of the aortic NA.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Aorta/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Coelhos
10.
J Vasc Surg ; 67(1): 300-308.e2, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28479097

RESUMO

OBJECTIVE: Animal models are required to explore the mechanisms of and therapy for proximal descending thoracic aortic aneurysm (TAA). This study aimed to establish a reproducible swine model of proximal descending TAA that can further explain the occurrence and progression of proximal descending TAA. METHODS: Eighteen Chinese Wuzhishan miniature pigs (30.32 ± 1.34 kg) were randomized into the elastase group (n = 12) and the control group (n = 6). The elastase group received intra-adventitial injections of elastase (5 mL, 20 mg/mL), and the control group received injections of physiologic saline solution. A 4-cm descending thoracic aortic segment proximal to the left subclavian artery was isolated. The distance between the left subclavian artery and the injection starting point of the descending thoracic aorta was 0.5 cm. Elastic protease was circumferentially injected intra-adventitially into the isolated segment of the aortic wall in the elastase group by a handmade bent syringe. The length of the elastic protease injection was 2 cm. An average of 12 injection points were distributed in this 2-cm aortic segment. Each injection point used about 0.4 mL of elastic protease. The distance between two injection points was about 1.5 cm. All animals underwent digital subtraction angiography preoperatively and 3 weeks after operation. Three weeks after TAA induction, aortas were harvested for biochemical and histologic measurements. RESULTS: All animals in the elastase group developed TAAs. No aneurysms were observed in the control group. The distance between the left subclavian artery and the TAA was 8.00 ± 4.19 mm. Preoperative and postoperative aortic diameters of the elastase group were 15.42 ± 0.43 mm and 24.53 ± 1.41 mm, respectively (P < .0001). Preoperative and postoperative aortic diameters of the control group were 15.31 ± 0.33 mm and 15.57 ± 0.40 mm, respectively (P = .5211). The changes of aortic structure and composition included reduction of smooth muscle cells and degradation of elastic fibers. Levels of matrix metalloproteinases 2 and 9 were increased in TAA tissue. CONCLUSIONS: This study established a reproducible large animal model of proximal descending TAA. This model has the same biochemical characteristics as human aneurysms in the aspects of aortic expansion, aortic middle-level degeneration, and changes in the levels of matrix metalloproteinases and provides a platform for further study.


Assuntos
Túnica Adventícia/efeitos dos fármacos , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/induzido quimicamente , Modelos Animais de Doenças , Elastase Pancreática/farmacologia , Porco Miniatura/fisiologia , Túnica Adventícia/patologia , Angiografia Digital , Animais , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/patologia , Progressão da Doença , Tecido Elástico/efeitos dos fármacos , Tecido Elástico/patologia , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Distribuição Aleatória , Suínos/fisiologia , Porco Miniatura/anatomia & histologia
11.
Exp Mol Pathol ; 102(3): 492-499, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28506767

RESUMO

The ablation of Mig-6 has been shown to induce tumor formation in various tissues. However, the relationships between Mig-6 expression, clinical pathological factors, and prognosis have not been clarified in hepatocellular carcinoma (HCC), and the mechanism by which Mig-6 regulates the proliferation of HCC cells has not been reported. In this study, we investigated the clinical significance of the loss of Mig-6 expression in HCC and the mechanism underlying the inhibition of cell proliferation by Mig-6. The down-regulation of Mig-6 correlated significantly with large tumors, a more advanced BCLC stage, and a more advanced TNM stage, and low Mig-6 expression predicted significantly reduced survival. Low Mig-6 expression and high Cyclin D1 expression were independent predictors for survival. The overexpression of Mig-6 led to significant G1 arrest and growth inhibition in HCC cells, possibly through the inhibition P-ERK and Cyclin D1. These results indicate that Mig-6 expression is low in HCC, which predicts a poor prognosis. Mig-6 may regulate cell proliferation and the cell cycle through the P-ERK/Cyclin D1 pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/diagnóstico , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/diagnóstico , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Regulação para Baixo , Feminino , Células Hep G2 , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Transfecção , Proteínas Supressoras de Tumor/genética
12.
PLoS One ; 10(5): e0125323, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25944736

RESUMO

BACKGROUND: Peripheral artery disease (PAD), which is caused by atherosclerosis, results in progressive narrowing and occlusion of the peripheral arteries and inhibits blood flow to the lower extremities. Therapeutic angiogenesis is a promising strategy for treating ischemia caused by PAD. Nitric oxide (NO) has been shown to be a key mediator of angiogenesis. It has been demonstrated that ß-cyclodextrincan stimulate vessel growth in rabbit corneas. In this study, we assessed the mechanism of action and therapeutic potential of a new angiogenic molecule, (2-hydroxypropyl)-ß-cyclodextrin (2HP-ß-CD). METHODS AND RESULTS: 2HP-ß-CD significantly increased vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor BB (PDGF-BB) peptides in human umbilical vein endothelial cells (HUVECs) and also increased basic fibroblast growth factor (bFGF) peptide in human aortic smooth muscle cells (HASMCs). 2HP-ß-CD stimulated both proliferation and migration of HUVECs in an endothelial nitric oxide synthase (eNOS)/NO-dependent manner, whereas NO was found to be involved in proliferation, but not migration, of HASMCs. In a unilateral hindlimb ischemia model in mice, 2HP-ß-CD injections not only promoted blood flow recovery and increased microvessel densities in ischemic muscle, but also promoted coverage of the vessels with smooth muscle cells, thus stabilizing the vessels. Administration of 2HP-ß-CD increased the expression of several angiogenic factors, including VEGF-A, PDGF-BB and transforming growth factor beta-1 (TGF-ß1) in ischemic muscle. Injections of 2HP-ß-CD also stimulated protein kinase B and extracellular regulated protein kinases (ERK), leading to an increase in phosphorylation of eNOS in ischemic muscle. Treatment with the NOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), showed that stimulation of blood flow induced by 2HP-ß-CD was partially dependent on NO. CONCLUSIONS: Therapeutic angiogenesis by 2HP-ß-CD may be beneficial to patients with PAD.


Assuntos
Indutores da Angiogênese/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Indutores da Angiogênese/administração & dosagem , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/tratamento farmacológico , Isquemia/genética , Isquemia/metabolismo , Masculino , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Fluxo Sanguíneo Regional/efeitos dos fármacos , beta-Ciclodextrinas/administração & dosagem
13.
J Gen Appl Microbiol ; 59(6): 463-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24492604

RESUMO

A polyphasic study was carried out to clarify the taxonomic position of a novel strain R-30(T) isolated from the surficial layer of sediment from Taihu Lake of China. The strain formed pink colored colonies comprising coccodial cells on R2A agar. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain R-30(T) clustered with the strains of genus Roseococcus and strain Rubritepida flocculans, with Roseococcus suduntuyensis SHET(T) as the closest relative, sharing 95.6% similarity. The major fatty acids (>5%) were 18:1ω7c (66.7%), 16: 1ω7c/16:1ω6c (10.2%) and 16:0 (8.0%). The major polar lipids were diphosphatidyl glycerol (DPG), phosphatidyl methylethanolamine (PME), phosphatidyl ethanolamine (PE) and phosphatidyl choline (PC). The genomic DNA G+C content was 73.9 mol%. On the basis of the phylogenetic analysis and physiological and biochemical characteristics, we conclude that strain R-30(T) represents a novel genus and species of the family Acetobacteraceae, for which we propose the name Sediminicoccus rosea gen nov. sp. nov. with R-30(T) (= CGMCC 1.12302(T) = NBRC 109675(T)) as the type species and type strain.


Assuntos
Acetobacteraceae/classificação , Acetobacteraceae/genética , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/metabolismo , Técnicas de Tipagem Bacteriana , Sequência de Bases , China , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Lagos , Lipídeos/análise , Dados de Sequência Molecular , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA