Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 38(8): 1751-1763, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909089

RESUMO

Aberrations in the Hedgehog (Hh) signaling pathway are significantly prevailed in various cancers, including B-cell lymphoma. A critical facet of Hh signal transduction involves the dynamic regulation of the suppressor of fused homolog (SUFU)-glioma-associated oncogene homolog (GLI) complex within the kinesin family member 7 (KIF7)-supported ciliary tip compartment. However, the specific post-translational modifications of SUFU-GLI complex within this context have remained largely unexplored. Our study reveals a novel regulatory mechanism involving prolyl 4-hydroxylase 2 (P4HA2), which forms a complex with KIF7 and is essential for signal transduction of Hh pathway. We demonstrate that, upon Hh pathway activation, P4HA2 relocates alongside KIF7 to the ciliary tip. Here, it hydroxylates SUFU to inhibit its function, thus amplifying the Hh signaling. Moreover, the absence of P4HA2 significantly impedes B lymphoma progression. This effect can be attributed to the suppression of Hh signaling in stromal fibroblasts, resulting in decreased growth factors essential for malignant proliferation of B lymphoma cells. Our findings highlight the role of P4HA2-mediated hydroxylation in modulating Hh signaling and propose a novel stromal-targeted therapeutic strategy for B-cell lymphoma.


Assuntos
Progressão da Doença , Proteínas Hedgehog , Linfoma de Células B , Pró-Colágeno-Prolina Dioxigenase , Proteínas Repressoras , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Hidroxilação , Comunicação Parácrina , Proliferação de Células , Cinesinas/metabolismo , Cinesinas/genética , Linhagem Celular Tumoral , Prolil Hidroxilases
2.
Acta Pharmacol Sin ; 45(6): 1305-1315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383757

RESUMO

Histone deacetylase inhibitors (HDACis) are important drugs for cancer therapy, but the indistinct resistant mechanisms of solid tumor therapy greatly limit their clinical application. In this study we conducted HDACi-perturbated proteomics and phosphoproteomics analyses in HDACi-sensitive and -resistant cell lines using a tandem mass tag (TMT)-based quantitative proteomic strategy. We found that the ribosome biogenesis proteins MRTO4, PES1, WDR74 and NOP16 vital to tumorigenesis might regulate the tumor sensitivity to HDACi. By integrating HDACi-perturbated protein signature with previously reported proteomics and drug sensitivity data, we predicted and validated a series of drug combination pairs potentially to enhance the sensitivity of HDACi in diverse solid tumor. Functional phosphoproteomic analysis further identified the kinase PDK1 and ROCK as potential HDACi-resistant signatures. Overall, this study reveals the potential HDACi-resistant signatures and may provide promising drug combination strategies to attenuate the resistance of solid tumor to HDACi.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Histona Desacetilases , Neoplasias , Proteômica , Humanos , Inibidores de Histona Desacetilases/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38128537

RESUMO

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Assuntos
Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Reparo de DNA por Recombinação , Humanos , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Ácido Láctico/metabolismo
4.
Cell Res ; 32(7): 638-658, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459936

RESUMO

Mutant isocitrate dehydrogenase 1 (mIDH1) drives tumorigenesis via producing oncometabolite R-2-hydroxyglutarate (R-2-HG) across various tumor types. However, mIDH1 inhibitors appear only effective in hematological tumors. The therapeutic benefit in solid tumors remains elusive, likely due to the complex tumor microenvironment. In this study, we discover that R-2-HG produced by IDH1-mutant tumor cells is preferentially imported into vascular endothelial cells and remodels mitochondrial respiration to promote tumor angiogenesis, conferring a therapeutic vulnerability in IDH1-mutant solid tumors. Mechanistically, SLC1A1, a Na+-dependent glutamate transporter that is preferentially expressed in endothelial cells, facilitates the influx of R-2-HG from the tumor microenvironment into the endothelial cells as well as the intracellular trafficking of R-2-HG from cytoplasm to mitochondria. R-2-HG hijacks SLC1A1 to promote mitochondrial Na+/Ca2+ exchange, which activates the mitochondrial respiratory chain and fuels vascular endothelial cell migration in tumor angiogenesis. SLC1A1 deficiency in mice abolishes mIDH1-promoted tumor angiogenesis as well as the therapeutic benefit of mIDH1 inhibitor in solid tumors. Moreover, we report that HH2301, a newly discovered mIDH1 inhibitor, shows promising efficacy in treating IDH1-mutant cholangiocarcinoma in preclinical models. Together, we identify a new role of SLC1A1 as a gatekeeper of R-2-HG-mediated crosstalk between IDH1-mutant tumor cells and vascular endothelial cells, and demonstrate the therapeutic potential of mIDH1 inhibitors in treating IDH1-mutant solid tumors via disrupting R-2-HG-promoted tumor angiogenesis.


Assuntos
Transportador 3 de Aminoácido Excitatório , Isocitrato Desidrogenase , Neoplasias , Animais , Células Endoteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutaratos , Isocitrato Desidrogenase/genética , Camundongos , Mitocôndrias/metabolismo , Mutação , Microambiente Tumoral
5.
Cell Death Differ ; 29(1): 1-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215846

RESUMO

SKP1-CUL1-F-box (SCF) ubiquitin ligases play fundamental roles in cellular functions. Typically, substrate phosphorylation is required for SCF recognition and subsequent degradation. However, phospho-dependent substrates remain largely unidentified. Here, using quantitative phoshoproteome approach, we performed a system-wide investigation of phospho-dependent SCF substrates. This strategy identified diverse phospho-dependent candidates. Biochemical verification revealed a mechanism by which SCFFBXO22 recognizes the motif XXPpSPXPXX as a conserved phosphodegron to target substrates for destruction. We further demonstrated BAG3, a HSP70 co-chaperone, is a bona fide substrate of SCFFBXO22. FBXO22 mediates BAG3 ubiquitination and degradation that requires ERK-dependent BAG3 phosphorylation at S377. FBXO22 depletion or expression of a stable BAG3 S377A mutant promotes tumor growth via defects in apoptosis and cell cycle progression in vitro and in vivo. In conclusion, our study identified broad phosphorylation-dependent SCF substrates and demonstrated a phosphodegron recognized by FBXO22 and a novel ERK-FBXO22-BAG3 axis involved in tumorigenesis.


Assuntos
Carcinogênese , Proteínas F-Box , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Transformação Celular Neoplásica , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Fosforilação , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
6.
Mol Cell ; 81(19): 4076-4090.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34375582

RESUMO

KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores Enzimáticos/farmacologia , Mutação , Neoplasias/tratamento farmacológico , Fosfoproteínas/metabolismo , Proteoma , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfoproteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Oncol ; 10: 963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612956

RESUMO

Lung squamous cell carcinoma (LUSC) is one of the leading causes of tumor-driven deaths in the world. To date, studies on the tumor heterogeneity of LUSC at genomic level have only revealed limited therapeutic benefits. Therefore, system-wide research of LUSC at proteomic level may further improve precision medicine strategies on individual demands. To this end, we performed proteomic and phosphoproteomic study for LUSC samples of 25 Chinese patients. From our results, two subgroups (Cluster I and II) based on proteomic data were identified, which were associated with distinct molecular characteristics and clinicopathologic features. Combined with phosphoproteomic data, our result showed that spliceosome pathway was enriched in Cluster I, while focal adhesion pathway, immune-related pathways and Ras signaling pathway were enriched in Cluster II. In addition, we found that lymph node metastasis (LNM) was associated with our proteomic subgroups and cell cycle pathway was enriched in patients with LNM. Further analysis showed that MCM2, a DNA replication licensing factor involved in cell cycle pathway, was highly expressed in patients with poor prognosis, which was further proved by immunohistochemistry (IHC) analysis. In summary, our study provided a resource of the proteomic and phosphoproteomic features of LUSC in Chinese patients.

8.
J Proteome Res ; 19(9): 3697-3707, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32692179

RESUMO

Type III interferon (IFN-λ) is currently considered to be largely nonredundant to type I interferon (IFN-α) in antivirus infection, especially in epithelial cells. Previous studies reported that, compared with IFN-α, IFN-λ exhibited stronger induction of interferon-stimulated genes (ISGs) at the transcriptional level in intestinal epithelial cells and stronger inhibition of porcine epidemic diarrhea virus (PEDV). In this study, the different mechanisms of ISG upregulation induced by IFN-α and IFN-λ1 were compared at the mRNA and protein levels in the porcine intestinal epithelial cell model (IPEC-J2). It was proved that IFN-λ1 consistently exhibited stronger stimulation effects at both levels. At the mRNA level, 132 genes were significantly upregulated upon IFN-λ1 stimulation, while 42 genes upon IFN-α stimulation. At the protein level, 47 proteins were significantly upregulated upon IFN-λ1 stimulation, but only 8 proteins were upregulated upon IFN-α stimulation. The shared upregulated genes/proteins by IFN-λ1 in both transcriptional and translational omics, especially the regulation factors of ISG15, were involved in the JAK-STAT signaling pathway. Compared to IFN-α, IFN-λ1 could induce more consistent upregulation of the key ISGs (ISG15, USP18, OASL, and RSAD2) at 3-24 h postinduction as measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) validation. It was further confirmed through functional analysis that ISG15 and RSAD2 could inhibit PEDV infection in dose-dependent manners. This study provided solid evidence that IFN-λ1 could induce a more unique and higher ISG expression level, which exhibited anti-PEDV effects on porcine intestinal epithelial cells.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Infecções por Coronavirus/genética , Infecções por Coronavirus/veterinária , Células Epiteliais , Vírus da Diarreia Epidêmica Suína/genética , Proteômica , Suínos , Transcriptoma
9.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649877

RESUMO

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteômica , Adenocarcinoma de Pulmão/genética , Povo Asiático/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias , Fosfoproteínas/metabolismo , Análise de Componente Principal , Prognóstico , Proteoma/metabolismo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
10.
Acta Pharmacol Sin ; 41(9): 1246-1254, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32210356

RESUMO

Mitophagy is a degradative pathway that mediates the degradation of the entire mitochondria, and defects in this process are implicated in many diseases including cancer. In mammals, mitophagy is mediated by BNIP3L (also known as NIX) that is a dual regulator of mitochondrial turnover and programmed cell death pathways. Acute myeloid leukemia (AML) cells with deficiency of BNIP3L are more sensitive to mitochondria-targeting drugs. But small molecular inhibitors for BNIP3L are currently not available. Some immunomodulatory drugs (IMiDs) have been proved by FDA for hematologic malignancies, however, the underlining molecular mechanisms are still elusive, which hindered the applications of BNIP3L inhibition for AML treatment. In this study we carried out MS-based quantitative proteomics analysis to identify the potential neosubstrates of a novel thalidomide derivative CC-885 in A549 cells. In total, we quantified 5029 proteins with 36 downregulated in CRBN+/+ cell after CC-885 administration. Bioinformatic analysis showed that macromitophagy pathway was enriched in the negative pathway after CC-885 treatment. We further found that CC-885 caused both dose- and time-dependent degradation of BNIP3L in CRBN+/+, but not CRBN-/- cell. Thus, our data uncover a novel role of CC-885 in the regulation of mitophagy by targeting BNIP3L for CRL4CRBN E3 ligase-dependent ubiquitination and degradation, suggesting that CC-885 could be used as a selective BNIP3L degradator for the further investigation. Furthermore, we demonstrated that CC-885 could enhance AML cell sensitivity to the mitochondria-targeting drug rotenone, suggesting that combining CC-885 and mitochondria-targeting drugs may be a therapeutic strategy for AML patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Talidomida/análogos & derivados , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HEK293 , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Rotenona/farmacologia , Talidomida/farmacologia , Ubiquitinação/efeitos dos fármacos
11.
J Proteomics ; 215: 103669, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31987925

RESUMO

The selection of a data processing method for use in mass spectrometry-based label-free proteome quantification contributes significantly to its accuracy and precision. In this study, we comprehensively evaluated 7 commonly-used label-free quantification methods (MaxQuant-Spectrum count, MaxQuant-iBAQ, MaxQuant-LFQ, MaxQuant-LFAQ, Proteome Discoverer, MetaMorpheus, TPP-StPeter) with a focus on missing values, precision, accuracy, selectivity, and reproducibility of low abundance protein quantification in both single shot and fractionation. Our results showed that among the tested strategies, MaxQuant in MaxLFQ mode outperformed other strategies in terms of accuracy and precision in both whole proteome and low abundance proteome quantification, whereas the Proteome Discoverer (PD) strategy using SEQUEST as a search engine performed better in terms of quantifiable low abundance proteome coverage. We subsequently applied the PD and MaxLFQ strategies in a blood proteomic dataset and found that many FDA-approved tumor prognostic biomarkers could be identified as well as quantified using the PD strategy, indicating the potential advantage of PD in label-free quantification studies. These results provide a reference for method choice in label-free quantification data analysis. SIGNIFICANCE: Mass spectrometry-based label-free quantification methods play an important role in label-free proteome data analysis. In this study, we evaluated 7 commonly-used label-free quantification methods with respect to the following aspects: missing values, precision, accuracy, selectivity, and reproducibility for low abundance protein quantification. The results showed that, among the strategies evaluated, the PD strategy with SEQUEST as a search engine performed better in terms of low abundance protein coverage. This study provides a reference for method choice in label-free quantification data analysis.


Assuntos
Proteoma , Proteômica , Espectrometria de Massas , Reprodutibilidade dos Testes , Software
12.
J Proteomics ; 213: 103614, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31846764

RESUMO

Lysine methylation is a widespread protein post-translational modification showing essentialities in versatile cellular process. EZH2, a methyltransferase specifically trimethylates the lysine 27 of histone H3 and its aberrance in several cancers promotes the development of its inhibitors against hematological tumors. In this study, we presented a deep exploration of lysine mono-, di- and trimethylomes in EZH2 wild-type and Y641 mutant lymphoma cell lines. Our results showed that several substrates were modified in different methylation levels. Moreover, these methylated lysine residues could also undergo other types of PTMs. Combined with the differences proved in protein expression, lysine acetylation, lysine ubiquitylation and protein N-termianl acetylation level, our study underlined the substrate specificity of lysine methylation and its crosstalk with other types of PTMs. Totally, our study raised new insights into the global cellular methylation features in hematological cell lines, which provided further inspects into the distribution and function of lysine methylation. SIGNIFICANCE: Our study showed the global landscape of mono-, di- and trimethylomes in the EZH2-aberrant DLBCL cell lines, revealing the molecular characteristics of lysine methylation. Combined with the protein abundance and potential crosstalk among different types of PTMs, our study raised new insights into the global cellular methylation features in hematological tumors and provided further inspects into the distribution and function of lysine methylation.


Assuntos
Linfoma , Lisina , Proteoma , Linhagem Celular , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigenoma , Humanos , Linfoma/genética , Metilação
13.
J Mass Spectrom ; 55(1): e4441, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31840882

RESUMO

Column heating strategy is often applied in nano-high-performance liquid chromatography-mass spectrometer (nanoHPLC-MS) platform for enhancing the analytical efficiency of peptides or proteins. Nonetheless, the influence effects of column heating in peptides or proteins identification still lack of deep understanding. In this study, a systematic comparison of room temperature (RT) and column heating of nanoHPLC was done. Based on the data, under column heating condition, the backpressure of nanoHPLC can be decreased. Due to the increase of resolution, the peak widths of precursor ion were narrowed. As a result, in MS/MS data acquisition part, more time was spared for MS1 detecting and MS2 fragmenting, which eventually resulted in increased identification of peptides and proteins. Moreover, we also proposed the application scope of column heating by evaluating its influence on sample detection. On one hand, column heating significantly increased the identification of membrane proteins due to more efficient elution of highly hydrophobic peptides compared with RT. On the other hand, heating was not suitable for analyzing short or/and hydrophilic peptides with low retention time, which would be eluted out during sample loading process under high temperature and missed by mass spectrometric detection. In conclusion, our study provides a reference for rational application of column heating in proteomics research.


Assuntos
Peptídeos/análise , Proteínas/análise , Proteoma/análise , Cromatografia Líquida de Alta Pressão/métodos , Células HeLa , Calefação , Temperatura Alta , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteômica , Espectrometria de Massas em Tandem/métodos
14.
J Proteomics ; 210: 103545, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31626998

RESUMO

Targeting specific ubiquitin E3 ligase for degradation of disease-driven protein has recently been an important concept for cancer therapy, as exemplified by the case of thalidomide for the treatment of multiple myeloma. E7070, an aryl sulfonamide drug, exhibited anticancer activity by targeting the E3 ligase receptor DCAF15, with RBM39 as the only known substrate. Exploration of additional substrates of E7070 would facilitate elucidation of its mechanism of actions. To this end, we used a strategy combing pSILAC method with two complementary digestion approaches (LysC-Trypsin and LysN-LysArgiNase) to accurately monitor the protein turnover and increase the depth of proteome profiling. Systematically, we showed that E7070 treatment changed turnover rates of 868 proteins (1.5 fold change and p-value <.05). Several proteins displayed accelerated turnover indicating they were potential new substrates of E7070, among which, pre-mRNA splicing factor 39 (PRPF39) had been reported to be overexpressed in certain cancers. We further demonstrated that PRPF39 was ubiquitinated and degraded by E7070 in a DCAF15-dependent manner, and represented a new bona fide substrate of E7070. The degradation of PRPF39 might also be contributed to the anticancer activity of E7070. SIGNIFICANCE: Identification of degraded substrates is difficult because protein abundance is a comprehensive result regulated by protein production and degradation at the same time. Pulsed SILAC (pSILAC), a method to measure protein turnover, would provide higher sensitivity than total protein quantification. In addition, some peptide sequences are not amenable to MS analysis after LysC-Trypsin digestion. LysN-LysargiNase, as a mirror protease combination of LysC-Trypsin, can be complementary for peptide identification with LysC-Trypsin. By combining pSILAC with two complementary digestion approaches (LysC-Trypsin and LysN-LysArgiNase), we systematically investigated E7070-dependent protein degradation. As a result, we found several potential degradation substrates of E7070 including PRPF39. Further, by exploiting a series of biological assays, we demonstrated that E7070 can lead to the ubiquitination and proteasomal degradation of PRPF39 by promoting the recruitment of PRPF39 to the CUL4-DCAF15 E3 ubiquitin ligase.


Assuntos
Neoplasias do Colo/patologia , Enzimas Reparadoras do DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteômica/métodos , Fatores de Processamento de RNA/metabolismo , Sulfonamidas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Espectrometria de Massas/métodos , Ubiquitina/química , Ubiquitina/metabolismo
15.
Mol Cell Proteomics ; 18(2): 391-405, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420486

RESUMO

The open (mass tolerant) search of tandem mass spectra of peptides shows great potential in the comprehensive detection of post-translational modifications (PTMs) in shotgun proteomics. However, this search strategy has not been widely used by the community, and one bottleneck of it is the lack of appropriate algorithms for automated and reliable post-processing of the coarse and error-prone search results. Here we present PTMiner, a software tool for confident filtering and localization of modifications (mass shifts) detected in an open search. After mass-shift-grouped false discovery rate (FDR) control of peptide-spectrum matches (PSMs), PTMiner uses an empirical Bayesian method to localize modifications through iterative learning of the prior probabilities of each type of modification occurring on different amino acids. The performance of PTMiner was evaluated on three data sets, including simulated data, chemically synthesized peptide library data and modified-peptide spiked-in proteome data. The results showed that PTMiner can effectively control the PSM FDR and accurately localize the modification sites. At 1% real false localization rate (FLR), PTMiner localized 93%, 84 and 83% of the modification sites in the three data sets, respectively, far higher than two open search engines we used and an extended version of the Ascore localization algorithm. We then used PTMiner to analyze a draft map of human proteome containing 25 million spectra from 30 tissues, and confidently identified over 1.7 million modified PSMs at 1% FDR and 1% FLR, which provided a system-wide view of both known and unknown PTMs in the human proteome.


Assuntos
Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Ferramenta de Busca , Software
16.
Cancer Lett ; 418: 97-108, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331417

RESUMO

Receptor interacting protein kinase 3 (RIP3) is a critical regulator of programmed necrotic cell death. Here, we observed that RIP3 was significantly down-regulated in esophageal cancer. And its remaining expression was associated with better response to chemotherapy and prolonged survival. Notably, re-expression of kinase-dead RIP3 also restored cisplatin sensitivity, suggesting that some roles of RIP3 beyond necroptosis may be involved in cisplatin-based chemosensitivity. To investigate the mechanisms, a large-scale quantitative proteomics study was performed after cisplatin treatment in RIP3-knockdown cells. In total, approximately 7000 protein groups were confidently identified, with a false discovery rate of 0.21% at the protein level. Of these proteins, 685 displayed RIP3-dependent changes in abundance. Bioinformatics analyses indicated that DNA repair pathway was stimulated after RIP3 depletion. Functional studies showed that deficient RIP3 upregulated FOSL1 and POLD1 through activation of the HSP90/CDC37 complex and ERK phosphorylation in multiple cell lines. Furthermore, via inhibition of the HSP90/CDC37 complex, ERK and FOSL1 reversed the cisplatin resistance phenotype. These results suggest that RIP3 regulates cisplatin sensitivity through both pronecrotic and non-necrotic functions. RIP3 may be a potential marker for predicting chemosensitivity.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Proteínas de Choque Térmico HSP90/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Reparo do DNA/genética , Regulação para Baixo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Feminino , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-28368805

RESUMO

IEF LC-MS/MS is an analytical method that incorporates a two-step sample separation prior to MS identification of proteins. When analyzing complex samples this preparatory separation allows for higher analytical depth and improved quantification accuracy of proteins. However, cost and analysis time are greatly increased as each analyzed IEF fraction is separately profiled using LC-MS/MS. We propose an approach that selects a subset of IEF fractions for LC-MS/MS analysis that is highly informative in the context of a group of proteins of interest. Specifically, our method allows a significant reduction in cost and instrument time as compared to the standard protocol of running all fractions, with little compromise to coverage. We develop algorithmics to optimize the selection of the IEF fractions on which to run LC-MS/MS. We translate the fraction optimization task to Minimum Set Cover, a well-studied NP-hard problem. We develop heuristic solutions and compare them in terms of effectiveness and running times. We provide examples to demonstrate advantages and limitations of each algorithmic approach. Finally, we test our methodology by applying it to experimental data obtained from IEF LC-MS/MS analysis of yeast and human samples. We demonstrate the benefit of this approach for analyzing complex samples with a focus on different protein sets of interest.


Assuntos
Cromatografia Líquida , Focalização Isoelétrica , Proteômica , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Análise por Conglomerados , Custos e Análise de Custo , Humanos , Focalização Isoelétrica/economia , Focalização Isoelétrica/métodos , Proteômica/economia , Proteômica/métodos , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos
18.
Sci Rep ; 7: 41089, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112229

RESUMO

Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection.


Assuntos
Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Vírus da Hepatite B/patogenicidade , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Metabolômica , Proteômica , Proteínas do Core Viral/genética
19.
Sci Rep ; 6: 31795, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561356

RESUMO

To investigate the protein profiling of buffalo oocytes at the germinal vesicle (GV) stage and metaphase II (MII) stage, an iTRAQ-based strategy was applied. A total of 3,763 proteins were identified, which representing the largest buffalo oocytes proteome dataset to date. Among these proteins identified, 173 proteins were differentially expressed in GV oocytes and competent MII oocytes, and 146 proteins were differentially abundant in competent and incompetent matured oocytes. Functional and KEGG pathway analysis revealed that the up-regulated proteins in competent MII oocytes were related to chromosome segregation, microtubule-based process, protein transport, oxidation reduction, ribosome, and oxidative phosphorylation, etc., in comparison with GV and incompetent MII oocytes. This is the first proteomic report on buffalo oocytes from different maturation stages and developmental competent status. These data will provide valuable information for understanding the molecular mechanism underlying buffalo oocyte maturation, and these proteins may potentially act as markers to predict developmental competence of buffalo oocyte during in vitro maturation.


Assuntos
Oócitos/metabolismo , Proteômica/métodos , Animais , Búfalos , Catálise , Bovinos , Técnicas de Cultura de Células , Biologia Computacional , Células do Cúmulo/metabolismo , Feminino , Perfilação da Expressão Gênica , Espectrometria de Massas , Metáfase , Microtúbulos/metabolismo , Oogênese , Fosforilação Oxidativa , Peptídeos , Proteoma , Ribossomos/metabolismo , Tripsina/química
20.
PLoS One ; 10(2): e0115862, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723528

RESUMO

The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 µL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Espectrometria de Massas , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Proteoma , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA