RESUMO
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author. It has been found that Fig 2B contains manipulated components, and Fig 5A partially overlaps with Fig 6 of a published paper authored by Mirza Muhammad Faran Ashraf Baig, et, al., The effective transfection of a low dose of negatively charged drug-loaded DNA-nanocarriers into cancer cells via scavenger receptors, J. Pharm. Anal. 11 (2021) 174-182, https://doi.org/10.1016/j.jpha.2020.10.003. The corresponding author indicated that they cannot guarantee the integrity of the images in the manuscript, as well as the conclusions of the paper. As a result, the Editor-in-Chief has decided to retract the paper. The corresponding author deeply regrets the circumstances and apologizes to the scientific community for not having detected this prior to publication.
Assuntos
Lipossomos , Neoplasias Hepáticas , Apoptose , Linhagem Celular , Humanos , Neoplasias Hepáticas/tratamento farmacológico , ValinomicinaRESUMO
Early diagnosis and therapy of cancer metastasis are of great importance for disease outcome. Circulating tumor cells (CTCs) offer the ability for noninvasive tumor profiling in real time. However, simply capturing and counting tumor cells are inadequate to provide valuable information about tumor. Efficiently releasing the captured cells is necessary for the downstream characterization. Herein, we describe a mild electrochemical strategy to effectively isolate CTCs from the bloodstream and rapidly release the captured cells in 2â¯min for downstream molecular characterization, as realized on a conductive poly(aminophenylboronic acid) derivatized electrode. The boronic ester linkage between dopamine (DA) and boronic acids-functionalized electrode is stable, and only upon the application of a weak potential perturbation does the boronic ester dissociate and release cells without compromising cell viability. This platform is reusable after acid treatment and has the potential to be the next-generation platform for cell capture and release, realizing the clinical value of CTCs as biomarkers.
Assuntos
Ácidos Borônicos/química , Ésteres/química , Células Neoplásicas Circulantes/patologia , Técnicas Biossensoriais , Contagem de Células , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular , Células Imobilizadas , Dopamina/química , Técnicas Eletroquímicas , Eletrodos , Humanos , OxirreduçãoRESUMO
We demonstrated a sensitive method for detection of glutathione (GSH) based on LSPR scattering spectrum using gold core-satellite nanostructure linked by T-Hg2+-T base pair. The core-satellite assembly caused coupling between plasmonic nanoparticles, which inducing distinct change of LSPR peak wavelength. As the interaction between Hg2+ and GSH, the core-satellite nanostructure would be disassembled, which accompanied with spectral blue-shift of the scattering spectrum. By using this method, GSH could be quantitatively detected, and the detection limits can reach to 0.1⯵M.
Assuntos
Glutationa/análise , Ouro/química , Nanopartículas Metálicas/química , Oligonucleotídeos/química , Espectrofotometria/métodos , Limite de Detecção , Mercúrio/química , Tamanho da PartículaRESUMO
We demonstrate a core-satellite plasmonic nanoprobe assembled via metal-ion-dependent DNA-cleaving DNAzyme linker for imaging intercellular metal ion based on plasmon coupling effect at a single-particle level. As metal ions are present in the system, the DNAzyme linker will be cleaved, and thus, disassembly of the core-satellite nanoprobes occurs, which results in distinct blue shift of the scattering spectra of Au core-satellite probes and naked color change of the scattering light. This change in scattering spectra has been supported by theoretical simulations. As a proof of concept, sensitive detection of Cu2+ with a limit of detection down to 67.2 pM has been demonstrated. The nanoprobes have been further utilized for intracellular Cu2+ imaging in living cells. The results demonstrate that the present strategy provides a promising platform for detection and imaging of metal ions in living cells and could be potentially applied to imaging other interesting target molecules simply by substituting the oligonucleotide sequence.
Assuntos
Cobre/análise , DNA Catalítico/química , Sondas Moleculares/química , Nanoestruturas/química , Imagem Óptica/métodos , Cobre/metabolismo , Células Hep G2 , HumanosRESUMO
The effective capture and release of circulating tumor cells (CTCs) is of significant importance in cancer prognose and treatment. Here we report a highly efficient method to capture and release human leukemic lymphoblasts (CCRF-CEM) using aptamers modified gold nanowire arrays (AuNWs). The gold nanowires, showing tunable morphologies from relatively random pillar deposit to relatively uniform arrays, were fabricated by electrochemical deposition using anodic aluminum oxide (AAO) as template. Upon simply being modified with aptamers by Au-S chemistry, the AuNWs exhibit higher specificity to target cells. Also compared to flat gold substrate, the AuNWs with nanostructure can capture target cells with much higher capture yield. Moreover, the captured CCRF-CEM cells can be released from AuNWs efficiently with little damage through an electrochemical desorption process. We predict that our strategy has great potential in providing a simple and economical platform for CTCs isolation, cancer diagnosis, and therapy.