Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancer Cell Int ; 24(1): 181, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790057

RESUMO

BACKGROUND: Immune checkpoint inhibitors are approved for the treatment of various tumors, but the response rate is not satisfactory in certain malignancies. Inhibitor of apoptosis proteins (IAP) ubiquitin-E3 ligase activity is involved in the regulation of immune responses. APG-1387 is a novel second mitochondria-derived activator of caspase (Smac) mimetic IAP inhibitor. The aim of this study was to explore the synergistic effect of APG-1387 when combined with anti-PD-1 antibody in a preclinical setting. METHODS: We utilized syngeneic mouse models of ovarian cancer (ID8), colon cancer (MC38), malignant melanoma (B16), and liver cancer (Hepa1-6) to assess the combination effect of APG-1387 and anti-PD-1 antibody, including immune-related factors, tumor growth, and survival. MSD V-PLEX validated assays were used to measure in vitro and in vivo cytokine release. RESULTS: In ID8 ovarian cancer and MC38 colon cancer models, APG-1387 and anti-PD1 antibody had synergistic antitumor effects. In the MC38 model, the combination of APG-1387 and anti-PD-1 antibody significantly inhibited tumor growth (P < 0.0001) and increased the survival rate of tumor-bearing animals (P < 0.001). Moreover, we found that APG-1387 upregulated tumor-infiltrating CD3 + NK1.1 + cells by nearly 2-fold, by promoting tumor cell secretion of IL-12. Blocking IL-12 secretion abrogated the synergistic effects of APG-1387 and anti-PD-1 antibody in both MC38 and ID8 models. CONCLUSIONS: APG-1387 has the potential to turn "cold tumors" into hot ones by recruiting more CD3 + NK1.1 + cells into certain tumors. Based on these and other data, the safety and therapeutic effect of this combination will be investigated in a phase 1/2 trial in patients with advanced solid tumors or hematologic malignancies (NCT03386526).

2.
Insects ; 15(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392529

RESUMO

This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.

3.
Clin Cancer Res ; 30(3): 506-521, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971712

RESUMO

PURPOSE: B-cell lymphoma-extra-large (BCL-xL) regulates apoptosis and is an attractive anticancer therapeutic target. However, BCL-xL inhibition also kills mature platelets, hampering clinical development. Using an innovative prodrug strategy, we have developed pelcitoclax (APG-1252), a potent, dual BCL-2 and BCL-xL inhibitor. Aims of this study were to characterize the antitumor activity and safety of pelcitoclax and explore its underlying mechanisms of action (MOA). PATIENTS AND METHODS: Cell line-derived xenograft and patient-derived xenograft (PDX) models were tested to evaluate antitumor activity and elucidate MOA. Subjects (N = 50) with metastatic small-cell lung cancer and other solid tumors received intravenous pelcitoclax once or twice weekly. Primary outcome measures were safety and tolerability; preliminary efficacy (responses every 2 cycles per RECIST version 1.1) represented a secondary endpoint. RESULTS: Pelcitoclax exhibited strong BAX/BAK‒dependent and caspase-mediated antiproliferative and apoptogenic activity in various cancer cell lines. Consistent with cell-based apoptogenic activity, pelcitoclax disrupted BCL-xL:BIM and BCL-xL:PUMA complexes in lung and gastric cancer PDX models. Levels of BCL-xL complexes correlated with tumor growth inhibition by pelcitoclax. Combined with taxanes, pelcitoclax enhanced antitumor activity by downregulating antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Importantly, pelcitoclax was well tolerated and demonstrated preliminary therapeutic efficacy, with overall response and disease control rates of 6.5% and 30.4%, respectively. Most common treatment-related adverse events included transaminase elevations and reduced platelets that were less frequent with a once-weekly schedule. CONCLUSIONS: Our data demonstrate that pelcitoclax has antitumor activity and is well tolerated, supporting its further clinical development for human solid tumors, particularly combined with agents that downregulate MCL-1.


Assuntos
Compostos de Anilina , Antineoplásicos , Neoplasias Pulmonares , Linfoma de Células B , Piperidinas , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas c-bcl-2 , Antineoplásicos/efeitos adversos , Apoptose , Neoplasias Pulmonares/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico
4.
Front Plant Sci ; 14: 1201730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457336

RESUMO

Salt Overly Sensitive 1 (SOS1) is one of the members of the Salt Overly Sensitive (SOS) signaling pathway and plays critical salt tolerance determinant in plants, while the characterization of the SOS1 family in potato (Solanum tuberosum) is lacking. In this study, 37 StSOS1s were identified and found to be unevenly distributed across 10 chromosomes, with most of them located on the plasma membrane. Promoter analysis revealed that the majority of these StSOS1 genes contain abundant cis-elements involved in various abiotic stress responses. Tissue specific expression showed that 21 of the 37 StSOS1s were widely expressed in various tissues or organs of the potato. Molecular interaction network analysis suggests that 25 StSOS1s may interact with other proteins involved in potassium ion transmembrane transport, response to salt stress, and cellular processes. In addition, collinearity analysis showed that 17, 8, 1 and 5 of orthologous StSOS1 genes were paired with those in tomato, pepper, tobacco, and Arabidopsis, respectively. Furthermore, RT-qPCR results revealed that the expression of StSOS1s were significant modulated by various abiotic stresses, in particular salt and abscisic acid stress. Furthermore, subcellular localization in Nicotiana benthamiana suggested that StSOS1-13 was located on the plasma membrane. These results extend the comprehensive overview of the StSOS1 gene family and set the stage for further analysis of the function of genes in SOS and hormone signaling pathways.

5.
Neoplasia ; 42: 100908, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37192591

RESUMO

The successful treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of anaplastic lymphoma kinase (ALK) with ALK tyrosine kinase inhibitors (ALK-TKIs) represents a promising targeted therapy. As a result, various ALK-TKIs have been rapidly developed, some of which are approved while some are being tested in clinical trials. Death receptor 4 (DR4; also called TNFRSF10A or TRAIL-R1) is a cell surface protein, which functions as a pro-apoptotic protein that transduces TRAIL death signaling to trigger apoptosis. DR4 expression is positively regulated by MEK/ERK signaling and thus can be downregulated by MEK/ERK inhibition. This study thus focused on determining the effects of AKL-TKIs on DR4 expression and the underlying mechanisms. Three tested ALK-TKIs including APG-2449, brigatinib and alectinib effectively and preferentially inhibited Akt/mTOR as well as MEK/ERK signaling and decreased cell survival in ALK-mutant (ALKm) NSCLC cells with induction of apoptosis. This was also true for DR4 downregulation, which occurred even at 2 h post treatment. These ALK-TKIs did not affect DR4 protein stability, rather decreased DR4 mRNA expression. In parallel, they promoted degradation and reduced the levels of Fra-1 and c-Jun, two critical components of AP-1, and suppressed AP-1 (Fra-1/c-Jun)-dependent transcription/expression of DR4. Hence, it appears that ALK-TKIs downregulate DR4 expression in ALKm NSCLC cells via facilitating Fra-1 and c-Jun degradation and subsequent AP-1 suppression. Our findings thus warrant further investigation of the biological significance of DR4 downregulation in ALK-targeted cancer therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/uso terapêutico , Fator de Transcrição AP-1/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico
6.
Clin Cancer Res ; 29(13): 2385-2393, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37074726

RESUMO

PURPOSE: This global phase I trial investigated the safety, efficacy, pharmacokinetics, and pharmacodynamics of lisaftoclax (APG-2575), a novel, orally active, potent selective B-cell lymphoma 2 (BCL-2) inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma (R/R CLL/SLL) and other hematologic malignancies (HMs). PATIENTS AND METHODS: Maximum tolerated dose (MTD) and recommended phase II dose were evaluated. Outcome measures were safety and tolerability (primary) and pharmacokinetic variables and antitumor effects (secondary). Pharmacodynamics in patient tumor cells were explored. RESULTS: Among 52 patients receiving lisaftoclax, MTD was not reached. Treatment-emergent adverse events (TEAEs) included diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%), headache (21.2%), peripheral edema and hypokalemia (17.3% each), and arthralgia (15.4%). Grade ≥ 3 hematologic TEAEs included neutropenia (21.2%), thrombocytopenia (13.5%), and anemia (9.6%), none resulting in treatment discontinuation. Clinical pharmacokinetic and pharmacodynamic results demonstrated that lisaftoclax had a limited plasma residence and systemic exposure and elicited rapid clearance of malignant cells. With a median treatment of 15 (range, 6-43) cycles, 14 of 22 efficacy-evaluable patients with R/R CLL/SLL experienced partial responses, for an objective response rate of 63.6% and median time to response of 2 (range, 2-8) cycles. CONCLUSIONS: Lisaftoclax was well tolerated, with no evidence of tumor lysis syndrome. Dose-limiting toxicity was not reached at the highest dose level. Lisaftoclax has a unique pharmacokinetic profile compatible with a potentially more convenient daily (vs. weekly) dose ramp-up schedule and induced rapid clinical responses in patients with CLL/SLL, warranting continued clinical investigation.


Assuntos
Anemia , Antineoplásicos , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Linfoma de Células B , Neutropenia , Trombocitopenia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Antineoplásicos/efeitos adversos , Linfoma de Células B/patologia , Neoplasias Hematológicas/tratamento farmacológico , Neutropenia/induzido quimicamente , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Proteínas Proto-Oncogênicas c-bcl-2
8.
Clin Cancer Res ; 29(1): 183-196, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36240005

RESUMO

PURPOSE: Despite approval of B-cell lymphoma (BCL)-2 inhibitor venetoclax for certain hematologic malignancies, its broader clinical benefit is curtailed by resistance. Our study aimed to determine if treatment with novel anticancer agents targeting BCL-2 and mouse double minute 2 (MDM2) could overcome venetoclax resistance in preclinical models. EXPERIMENTAL DESIGN: Venetoclax-sensitive and venetoclax-resistant acute myeloid leukemia (AML) and acute lymphoblastic leukemia cells and xenograft models were used to evaluate antitumor effects and underlying mechanisms associated with combined BCL-2 inhibitor lisaftoclax (APG-2575) and MDM2 inhibitor alrizomadlin (APG-115). RESULTS: The combination exhibited synergistic antiproliferative and apoptogenic activities in TP53 wild-type AML cell lines in vitro. This synergy was further exemplified by deep antitumor responses and prolonged survival in AML cell line-derived and patient-derived xenograft models. Interestingly, the combination treatment resensitized (to apoptosis) venetoclax-resistant cellular and mouse models established via chronic drug exposure or genetically engineered with clinically relevant BCL-2 gene mutations. Synergistic effects in reducing cellular viability and proliferation were also demonstrated in primary samples of patients with venetoclax-resistant AML treated with lisaftoclax and alrizomadlin ex vivo. Mechanistically, alrizomadlin likely primes cancer cells to BCL-2 inhibition-induced cellular apoptosis by downregulating expression of antiapoptotic proteins myeloid cell leukemia-1 and BCL-extra-large and upregulating pro-death BCL-2-associated X protein. CONCLUSIONS: Lisaftoclax in combination with alrizomadlin overcomes venetoclax resistance mediated by various mechanisms, including BCL-2 mutations. In addition, we posit further, putative molecular mechanisms. Our data rationalize clinical development of this treatment combination in patients with diseases that are insensitive or resistant to venetoclax.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
Neuro Oncol ; 25(4): 735-747, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35977048

RESUMO

BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor and a mitogen-activated protein kinase (MAPK)-driven disease. Oncogenic MAPK-signaling drives the majority of cells into oncogene-induced senescence (OIS). While OIS induces resistance to antiproliferative therapies, it represents a potential vulnerability exploitable by senolytic agents. METHODS: We established new patient-derived PA cell lines that preserve molecular features of the primary tumors and can be studied in OIS and proliferation depending on expression or repression of the SV40 large T antigen. We determined expression of anti-apoptotic BCL-2 members in these models and primary PA. Dependence of senescent PA cells on anti-apoptotic BCL-2 members was investigated using a comprehensive set of BH3 mimetics. RESULTS: Senescent PA cells upregulate BCL-XL upon senescence induction and show dependency on BCL-XL for survival. BH3 mimetics with high affinity for BCL-XL (BCL-XLi) reduce metabolic activity and induce mitochondrial apoptosis in senescent PA cells at nano-molar concentrations. In contrast, BH3 mimetics without BCL-XLi activity, conventional chemotherapy, and MEK inhibitors show no effect. CONCLUSIONS: Our data demonstrate that BCL-XL is critical for survival of senescent PA tumor cells and provides proof-of-principle for the use of clinically available BCL-XL-dependent senolytics.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Proteínas Proto-Oncogênicas c-bcl-2 , Apoptose , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Proteínas Quinases Ativadas por Mitógeno , Linhagem Celular Tumoral
10.
Front Pharmacol ; 13: 1065130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582520

RESUMO

Olverembatinib (HQP1351) is a third-generation BCR-ABL tyrosine kinase inhibitor for the treatment of chronic myeloid leukemia (CML) (including T315I-mutant disease), exhibits drug-drug interaction (DDI) potential through cytochrome P450 (CYP) enzymes CYP3A4, CYP2C9, CYP2C19, CYP1A2, and CYP2B6. A physiologically-based pharmacokinetic (PBPK) model was constructed based on physicochemical and in vitro parameters, as well as clinical data to predict 1) potential DDIs between olverembatinib and CYP3A4 and CYP2C9 inhibitors or inducers 2), effects of olverembatinib on the exposure of CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 substrates, and 3) pharmacokinetics in patients with liver function injury. The PBPK model successfully described observed plasma concentrations of olverembatinib from healthy subjects and patients with CML after a single administration, and predicted olverembatinib exposure increases when co-administered with itraconazole (strong CYP3A4 inhibitor) and decreases with rifampicin (strong CYP3A4 inducer), which were validated by observed data. The predicted results suggest that 1) strong, moderate, and mild CYP3A4 inhibitors (which have some overlap with CYP2C9 inhibitors) may increase olverembatinib exposure by approximately 2.39-, 1.80- to 2.39-, and 1.08-fold, respectively; strong, and moderate CYP3A4 inducers may decrease olverembatinib exposure by approximately 0.29-, and 0.35- to 0.56-fold, respectively 2); olverembatinib, as a "perpetrator," would have no or limited impact on CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 enzyme activity 3); systemic exposure of olverembatinib in liver function injury with Child-Pugh A, B, C may increase by 1.22-, 1.79-, and 2.13-fold, respectively. These simulations inform DDI risk for olverembatinib as either a "victim" or "perpetrator".

12.
Mol Carcinog ; 61(11): 1031-1042, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066010

RESUMO

Targeting the induction of apoptosis is a promising cancer therapeutic strategy with some clinical success. This study focused on evaluating the therapeutic efficacy of the novel Bcl-2/Bcl-XL dual inhibitor, APG1252-M1 (also named APG-1244; an in vivo active metabolite of APG1252 or pelcitoclax), as a single agent or in combination, against non-small cell lung cancer (NSCLC) cells. APG1252-M1 effectively decreased the survival of some NSCLC cell lines expressing low levels of Mcl-1 and induced apoptosis. Overexpression of ectopic Mcl-1 in the sensitive cells substantially compromised APG1252-M1's cell-killing effects, whereas inhibition of Mcl-1 greatly sensitized insensitive cell lines to APG1252-M1, indicating the critical role of Mcl-1 levels in impacting cell response to APG1252-M1. Moreover, APG1252-M1, when combined with the third generation epidermal growth factor receptor (EGFR) inhibitor, osimertinib, synergistically decreased the survival of EGFR-mutant NSCLC cell lines including those resistant to osimertinib with enhanced induction of apoptosis and abrogated emergence of acquired resistance to osimertinib. Importantly, the combination was effective in inhibiting the growth of osimertinib-resistant tumors in vivo. Collectively, these results demonstrate the efficacy of APG1252 alone or in combination against human NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB , Humanos , Indóis , Neoplasias Pulmonares/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas
13.
Clin Cancer Res ; 28(24): 5455-5468, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36048524

RESUMO

PURPOSE: Development of B-cell lymphoma 2 (BCL-2)-specific inhibitors poses unique challenges in drug design because of BCL-2 homology domain 3 (BH3) shared homology between BCL-2 family members and the shallow surface of their protein-protein interactions. We report herein discovery and extensive preclinical investigation of lisaftoclax (APG-2575). EXPERIMENTAL DESIGN: Computational modeling was used to design "lead" compounds. Biochemical binding, mitochondrial BH3 profiling, and cell-based viability or apoptosis assays were used to determine the selectivity and potency of BCL-2 inhibitor lisaftoclax. The antitumor effects of lisaftoclax were also evaluated in several xenograft models. RESULTS: Lisaftoclax selectively binds BCL-2 (Ki < 0.1 nmol/L), disrupts BCL-2:BIM complexes, and compromises mitochondrial outer membrane potential, culminating in BAX/BAK-dependent, caspase-mediated apoptosis. Lisaftoclax exerted strong antitumor activity in hematologic cancer cell lines and tumor cells from patients with chronic lymphocytic leukemia, multiple myeloma, or Waldenström macroglobulinemia. After lisaftoclax treatment, prodeath proteins BCL-2‒like protein 11 (BIM) and Noxa increased, and BIM translocated from cytosol to mitochondria. Consistent with these apoptotic activities, lisaftoclax entered malignant cells rapidly, reached plateau in 2 hours, and significantly downregulated mitochondrial respiratory function and ATP production. Furthermore, lisaftoclax inhibited tumor growth in xenograft models, correlating with caspase activation, poly (ADP-ribose) polymerase 1 cleavage, and pharmacokinetics of the compound. Lisaftoclax combined with rituximab or bendamustine/rituximab enhanced antitumor activity in vivo. CONCLUSIONS: These findings demonstrate that lisaftoclax is a novel, orally bioavailable BH3 mimetic BCL-2-selective inhibitor with considerable potential for the treatment of certain hematologic malignancies.


Assuntos
Antineoplásicos , Neoplasias Hematológicas , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Antineoplásicos/farmacologia , Apoptose , Proteína 11 Semelhante a Bcl-2 , Caspases , Linhagem Celular Tumoral , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Rituximab/farmacologia
14.
J Hematol Oncol ; 15(1): 113, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982483

RESUMO

BACKGROUND: BCR-ABL1T315I mutations confer resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). Olverembatinib is a new potent BCR-ABL1 TKI with preclinical activity against T315I-mutated CML. In phase 1/2 studies, we explored the safety and efficacy of olverembatinib in Chinese adults with TKI-resistant CML in the chronic phase (CML-CP) and accelerated phase (CML-AP). METHODS: In the phase 1 study, olverembatinib was orally administered once every other day in 28-day cycles at 11 dose cohorts ranging from 1 to 60 mg, and we evaluated the maximum tolerated dose, recommended phase 2 dose (RP2D), safety, efficacy, and pharmacokinetics of olverembatinib. In the phase 2 studies, olverembatinib was administered at the RP2D of 40 mg orally on alternate days for 28-day cycles. The primary outcome measure is major cytogenetic response (MCyR) and major hematologic response by the end of Cycle 12 in CML-CP and CML-AP, respectively. Fine and Gray's hazard models were used to identify covariates associated with responses. RESULTS: A total of 165 patients (> 80.0% of whom had received ≥ 2 TKIs) were enrolled in this study. Among 127 patients with CML-CP, the 3-year cumulative incidences of achieving MCyR, complete cytogenetic response (CCyR), major molecular response (MMR), MR4.0, and MR4.5 were 79.0, 69.0, 56.0, 44.0 and 39.0%, respectively. The highest response rates were observed in patients with a single T315I mutation. Among 38 patients with CML-AP, the 3-year cumulative incidences of achieving MCyR, CCyR, MMR, MR4.0, and MR4.5 were 47.4%, 47.4%, 44.7%, 39.3%, and 32.1%, respectively. In multivariate analyses, baseline BCR-ABL1 mutation status was significantly associated with cytogenetic and molecular responses. Common treatment-related adverse events included skin hyperpigmentation, hypertriglyceridemia, proteinuria, and severe thrombocytopenia. CONCLUSIONS: Olverembatinib was well tolerated, with significant antileukemic activity in adults with TKI-resistant CML-CP and CML-AP, especially those with the T315I mutation. TRIAL REGISTRATION: The phase 1 trial is registered at CTR20220566, and the two single-arm, open-label phase 2 studies are registered at ClinicalTrials.gov: NCT03883087 (CML-CP) and NCT03883100 (CML-AP).


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adulto , Inibidores da Angiogênese/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
15.
BMC Cancer ; 22(1): 752, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820889

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK). Here we present the preclinical evaluation of APG-2449, which exhibits antiproliferative activity in cells carrying ALK fusion or secondary mutations. METHODS: KINOMEscan® and LANCE TR-FRET were used to characterize targets and selectivity of APG-2449. Water-soluble tetrazolium salt (WST-8) viability assay and xenograft tumorigenicity were employed to evaluate therapeutic efficacy of monotherapy or drug combination in preclinical models of solid tumors. Western blot, pharmacokinetic, and flow cytometry analyses, as well as RNA sequencing were used to explore pharmacokinetic-pharmacodynamic correlations and the mechanism of actions driving drug combination synergy. RESULTS: In mice bearing wild-type or ALK/ROS1-mutant non-small-cell lung cancer (NSCLC), APG-2449 demonstrates potent antitumor activity, with correlations between pharmacokinetics and pharmacodynamics in vivo. Through FAK inhibition, APG-2449 sensitizes ovarian xenograft tumors to paclitaxel by reducing CD44+ and aldehyde dehydrogenase 1-positive (ALDH1+) cancer stem cell populations, including ovarian tumors insensitive to carboplatin. In epidermal growth factor receptor (EGFR)-mutated NSCLC xenograft models, APG-2449 enhances EGFR TKI-induced tumor growth inhibition, while the ternary combination of APG-2449 with EGFR (osimertinib) and mitogen-activated extracellular signal-regulated kinase (MEK; trametinib) inhibitors overcomes osimertinib resistance. Mechanistically, phosphorylation of ALK, ROS1, and FAK, as well as their downstream components, is effectively inhibited by APG-2449. CONCLUSIONS: Taken together, our studies demonstrate that APG-2449 exerts potent and durable antitumor activity in human NSCLC and ovarian tumor models when administered alone or in combination with other therapies. A phase 1 clinical trial has been initiated to evaluate the safety and preliminary efficacy of APG-2449 in patients with advanced solid tumors, including ALK+ NSCLC refractory to earlier-generation ALK inhibitors. TRIAL REGISTRATION: Clinicaltrial.gov registration: NCT03917043 (date of first registration, 16/04/2019) and Chinese clinical trial registration: CTR20190468 (date of first registration, 09/04/2019).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias Ovarianas , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Ensaios Clínicos Fase I como Assunto , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Feminino , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/metabolismo
16.
J Transl Med ; 20(1): 299, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794605

RESUMO

BACKGROUND: Despite advances in targeted agent development, effective treatment of acute myeloid leukemia (AML) remains a major clinical challenge. The B-cell lymphoma-2 (BCL-2) inhibitor exhibited promising clinical activity in AML, acute lymphoblastic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL) treatment. APG-2575 is a novel BCL-2 selective inhibitor, which has demonstrated anti-tumor activity in hematologic malignancies. Homoharringtonine (HHT), an alkaloid, exhibited anti-AML activity. METHODS: The synergistic effects of APG-2575 and HHT were studied in AML cell lines and primary samples. MTS was used to measure the cell viability. Annexin V/propidium iodide staining was used to measure the apoptosis rate by flow cytometry. AML cell xenografted mouse models were established to evaluate the anti-leukemic effect of BCL-2 inhibitor, HHT and their combination in vivo. Western blot was used to determine the expression of related proteins. RESULTS: APG-2575 showed comparable anti-leukemic effect to the FDA-approved BCL-2 inhibitor ABT-199 in vitro and in vivo. Combined treatment of HHT with APG-2575 synergistically inhibited AML cell growth and engraftment. Mechanistically, HHT promoted degradation of myeloid cell leukemia-1 (MCL-1), which was reported to induce BCL-2 inhibitor resistant, through the PI3K/AKT/GSK3ß signaling pathway. CONCLUSION: Our results provide an effective AML treatment strategy through combination of APG-2575 and HHT, which is worthy of further clinical research.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Mepesuccinato de Omacetaxina , Leucemia Mieloide Aguda , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Mepesuccinato de Omacetaxina/administração & dosagem , Mepesuccinato de Omacetaxina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Neoplasia ; 29: 100798, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462114

RESUMO

New treatment options, such as targeted therapies, are urgently needed for the treatment of colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide. The current study focuses on demonstrating the therapeutic efficacies of APG-1252-M1 (an active form of the prodrug, APG-1252 or pelcitoclax), a highly potent Bcl-2/Bcl-XL dual inhibitor in clinical trials, against CRC and understanding the underlying mechanisms. APG-1252-M1 effectively decreased the survival of CRC cell lines, particularly those expressing relatively low levels of Mcl-1, with the induction of apoptosis. High levels of Mcl-1 were significantly correlated with decreased sensitivity of CRC cell lines to APG-1252-M1. When combined with an Mcl-1 inhibitor, APG-1252-M1 synergistically decreased the survival and induced apoptosis of APG-1252-M1-insensitive cell lines with high levels of Mcl-1. This combination further decreased the survival and enhanced apoptosis even in sensitive cell lines with relatively low levels of Mcl-1, whereas enforced expression of ectopic Mcl-1 in these cells abrogated APG-1252-M1's effects on decreasing cell survival and inducing apoptosis, which could be reversed by Mcl-1 inhibition. APG-1252-M1 rapidly induced cytochrome C and Smac release from mitochondria with caspase-3 and PARP cleavage. Deficiency of Bax in CRC cells abolished APG-1252-M1's ability to induce apoptosis, indicating that APG-1252-M1 induces Bax-dependent apoptosis. The current study thus demonstrates the potential of APG-1252-M1 as a monotherapy in the treatment of CRC, particularly those with low Mcl-1 expression, or in combination with an Mcl-1 inhibitor, warranting further evaluation in vivo and in the clinic.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/farmacologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
18.
J Comp Eff Res ; 11(8): 621-637, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411807

RESUMO

Aim: To conduct a systematic literature review of real-world evidence on the burden of tyrosine kinase inhibitor (TKI) failure in Chinese patients with chronic myeloid leukemia (CML). Methods: We identified 155 references in Chinese- and English-language journals from 2001 to 2021. Results: The age-adjusted mortality rate in Chinese CML patients was decreasing. Imatinib treatment had a higher annual treatment failure risk than nilotinib (0.199 vs 0.041). Patients with TKI treatment failure tended to be young (median: 38.6 years), have progressive disease (44.3%) and harbor BCR-ABL1 mutations (51.6%). The disease burden of TKI treatment failure included reduced health outcomes and increased health resource utilization and costs. Conclusion: CML relapse cases could continuously rise in China due to increasing TKI treatment failure over extended survival.


Assuntos
Idioma , Leucemia Mielogênica Crônica BCR-ABL Positiva , Povo Asiático , Humanos , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico
19.
Oncogene ; 41(12): 1691-1700, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102249

RESUMO

Treatment of EGFR-mutant non-small cell lung cancer (NSCLC) with mutation-selective third-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib has achieved remarkable success in the clinic. However, the immediate challenge is the emergence of acquired resistance, limiting the long-term remission of patients. This study suggests a novel strategy to overcome acquired resistance to osimertinib and other third-generation EGFR-TKIs through directly targeting the intrinsic apoptotic pathway. We found that osimertinib, when combined with Mcl-1 inhibition or Bax activation, synergistically decreased the survival of different osimertinib-resistant cell lines, enhanced the induction of intrinsic apoptosis, and inhibited the growth of osimertinib-resistant tumor in vivo. Interestingly, the triple-combination of osimertinib with Mcl-1 inhibition and Bax activation exhibited the most potent activity in decreasing the survival and inducing apoptosis of osimertinib-resistant cells and in suppressing the growth of osimertinib-resistant tumors. These effects were associated with increased activation of the intrinsic apoptotic pathway evidenced by augmented mitochondrial cytochrome C and Smac release. Hence, this study convincingly demonstrates a novel strategy for overcoming acquired resistance to osimertinib and other 3rd generation EGFR-TKIs by targeting activation of the intrinsic apoptotic pathway through Mcl-1 inhibition, Bax activation or both, warranting further clinical validation of this strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Compostos de Anilina/farmacologia , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína X Associada a bcl-2/genética
20.
Transl Oncol ; 15(1): 101244, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710737

RESUMO

INTRODUCTION: FLT3-ITD mutations occur in approximately 25% of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Despite initial efficacy, short duration of response and high relapse rates limit clinical use of selective FLT3 inhibitors. Combination approaches with other targeted therapies may achieve better clinical outcomes. MATERIALS AND METHODS: Anti-leukemic activity of multikinase inhibitor olverembatinib (HQP1351), alone or in combination with BCL-2 inhibitor lisaftoclax (APG-2575), was evaluated in FLT3-ITD mutant AML cell lines in vitro and in vivo. A patient-derived FLT3-ITD mutant AML xenograft model was also used to assess the anti-leukemic activity of this combination. RESULTS: HQP1351 potently induced apoptosis and inhibited FLT3 signaling in FLT3-ITD mutant AML cell lines MV-4-11 and MOLM-13. HQP1351 monotherapy also significantly suppressed growth of FLT3-ITD mutant AML xenograft tumors and prolonged survival of tumor-bearing mice. HQP1351 and APG-2575 synergistically induced apoptosis in FLT3-ITD mutant AML cells and suppressed growth of MV-4-11 xenograft tumors. Combination therapy improved survival of tumor bearing-mice in a systemic MOLM-13 model and showed synergistic anti-leukemic effects in a patient-derived FLT3-ITD mutant AML xenograft model. Mechanistically, HQP1351 downregulated expression of myeloid-cell leukemia 1 (MCL-1) by suppressing FLT3-STAT5 (signal transducer and activator of transcription 5) signaling and thus enhanced APG-2575-induced apoptosis in FLT3-ITD mutant AML cells. CONCLUSIONS: FLT3 inhibition by HQP1351 downregulates MCL-1 and synergizes with BCL-2 inhibitor APG-2575 to potentiate cellular apoptosis in FLT3-ITD mutant AML. Our findings provide a scientific rationale for further clinical investigation of HQP1351 combined with APG-2575 in patients with FLT3-ITD mutant AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA