Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(9): 3412-3425, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993571

RESUMO

Chronic kidney disease (CKD) is linked to greater prevalence and rapid progression of calcific aortic valve disease (CAVD) characterized by valvular leaflet fibrosis and calcification. Fibroblast growth factor 23 (FGF23) level is elevated, and anti-aging protein Klotho is reduced in CKD patients. However, the roles of FGF23 and Klotho in the mechanism of aortic valve fibrosis and calcification remain unclear. We hypothesized that FGF23 mediates CKD-induced CAVD by enhancing aortic valve interstitial cell (AVIC) fibrosis and calcification, while soluble Klotho inhibits FGF23 effect. Methods and Results: In an old mouse model of CKD, kidney damages were accompanied by aortic valve thickening and calcification. FGF23 levels in plasma and aortic valve were increased, while Klotho levels were decreased. Recombinant FGF23 elevated the inflammatory, fibrogenic, and osteogenic activities in AVICs. Neutralizing antibody or shRNA targeting FGF23 suppressed the pathobiological activities in AVICs from valves affected by CAVD. FGF23 exerts its effects on AVICs via FGF receptor (FGFR)/Yes-associated protein (YAP) signaling, and inhibition of FGFR/YAP reduced FGF23's potency in AVICs. Recombinant Klotho downregulated the pathobiological activities in AVICs exposed to FGF23. Incubation of FGF23 with Klotho formed complexes and decreased FGF23's potency. Further, treatment of CKD mice with recombinant Klotho attenuated aortic valve lesions. Conclusion: This study demonstrates that CKD induces FGF23 accumulation, Klotho insufficiency and aortic valve lesions in old mice. FGF23 upregulates the inflammatory, fibrogenic and osteogenic activities in AVICs via the FGFR/YAP signaling pathway. Soluble Klotho suppresses FGF23 effect through molecular interaction and is capable of mitigating CKD-induced CAVD.


Assuntos
Valva Aórtica , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Glucuronidase , Proteínas Klotho , Insuficiência Renal Crônica , Proteínas Klotho/metabolismo , Fator de Crescimento de Fibroblastos 23/metabolismo , Animais , Insuficiência Renal Crônica/metabolismo , Glucuronidase/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Humanos , Estenose da Valva Aórtica/metabolismo , Modelos Animais de Doenças
2.
Cell Death Discov ; 10(1): 331, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033180

RESUMO

Recently, N6-methyladenosine (m6A) has aroused widespread discussion in the scientific community as a mode of RNA modification. m6A comprises writers, erasers, and readers, which regulates RNA production, nuclear export, and translation and is very important for human health. A large number of studies have found that the regulation of m6A is closely related to the occurrence and invasion of tumors, while the homeostasis and function of the tumor microenvironment (TME) determine the occurrence and development of tumors to some extent. TME is composed of a variety of immune cells (T cells, B cells, etc.) and nonimmune cells (tumor-associated mesenchymal stem cells (TA-MSCs), cancer-associated fibroblasts (CAFs), etc.). Current studies suggest that m6A is involved in regulating the function of various cells in the TME, thereby affecting tumor progression. In this manuscript, we present the composition of m6A and TME, the relationship between m6A methylation and characteristic changes in TME, the role of m6A methylation in TME, and potential therapeutic strategies to provide new perspectives for better treatment of tumors in clinical work.

3.
Front Cardiovasc Med ; 10: 1293866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094127

RESUMO

Introduction: Sepsis is prevalent in the elderly population with increased incidence and mortality. Currently, the mechanism by which aging increases the susceptibility to sepsis and worsens outcome is unclear. We tested the hypothesis that aging exacerbates cardiac dysfunction in sepsis through a Toll-like receptor 2 (TLR2)-dependent mechanism. Methods: Male young adult (4-6 months) and old (18-20 months) wild type (WT) and TLR2 knockout (KO) mice were subject to moderate sepsis by cecal ligation and puncture. Additional groups of young adult and old WT mice were treated with TLR2 agonist Pam3CSK4. Left ventricle (LV) performance was evaluated with a pressure-volume microcatheter. Tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in the myocardium and plasma were assessed using enzyme-linked immunosorbent assay. Results: Sepsis reduced LV ejection fraction and cardiac output in both young adult and old WT mice. However, identical CLP caused more severe cardiac dysfunction and high mortality in old WT mice that were accompanied by greater levels of TNF-α, IL-1ß, IL-6 and MCP-1 in the myocardium and plasma. TLR2 KO diminished aging-related difference in myocardial and systemic inflammatory response, resulting in improved cardiac function and decreased mortality in old septic mice. In addition, higher myocardial TLR2 levels in old WT mice resulted in greater myocardial inflammatory response and worse cardiac dysfunction following administration of TLR2 agonist. Conclusion: Moderate sepsis results in greater cardiac dysfunction and significant mortality in old mice. Aging elevates TLR2 level/activity to exacerbate the inflammatory response to sepsis, leading to worse cardiac dysfunction and mortality.

4.
BMC Cancer ; 23(1): 616, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400750

RESUMO

OBJECTIVE: To investigate the relationship among 18 heavy metals, microsatellite instability (MSI) status, ERCC1, XRCC1 (rs25487), BRAF V600E and 5 tumor markers and their role in the development of colorectal cancer (CRC). METHODS: A total of 101 CRC patients and 60 healthy controls were recruited in the present study. The levels of 18 heavy metals were measured by ICP-MS. MSI status and the genetic polymorphism were determined by PCR (FP205-02, Tiangen Biochemical Technology Co., Ltd., Beijing, China) and Sanger sequencing. Spearman's rank correlation was used to analyze the relationship among various factors. RESULTS: The level of selenium (Se) was lower in the CRC group compared with the control group (p < 0.01), while vanadium (V), arsenic (As), tin (Sn), barium (Ba) and lead (Pb) were higher (p < 0.05), chromium (Cr) and copper (Cu) were significantly higher (p < 0.0001) in the CRC group than those in the control group. Multivariate logistic regression analysis indicated that Cr, Cu, As and Ba were the risk factors for CRC. In addition, CRC was positively correlated with V, Cr, Cu, As, Sn, Ba and Pb, but negatively correlated with Se. MSI was positively correlated with BRAF V600E, but negatively correlated with ERCC1. BRAF V600E was positively correlated with antimony (Sb), thallium (Tl), CA19-9, NSE, AFP and CK19. XRCC1 (rs25487) was found to be positively correlated with Se but negatively correlated with Co. The levels of Sb and Tl were significantly higher in the BRAF V600E positive group compared to the negative group. The mRNA expression level of ERCC1 was significantly higher (P = 0.035) in MSS compared to MSI. And there was a significant correlation between XRCC1 (rs25487) polymorphism and MSI status (P<0.05). CONCLUSION: The results showed that low level of Se and high levels of V, As, Sn, Ba, Pb, Cr, and Cu increased the risk of CRC. Sb and Tl may cause BRAF V600E mutations, leading to MSI. XRCC1 (rs25487) was positively correlated with Se but negatively correlated with Co. The expression of ERCC1 may be related to MSS, while the XRCC1 (rs25487) polymorphism is related to MSI.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação a DNA , Endonucleases , Metais Pesados , Instabilidade de Microssatélites , Proteínas Proto-Oncogênicas B-raf , Proteína 1 Complementadora Cruzada de Reparo de Raio-X , Neoplasias Colorretais/sangue , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Metais Pesados/sangue , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Polimorfismo Genético , Fatores de Risco , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Incidência
5.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037361

RESUMO

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Assuntos
Estenose da Valva Aórtica , Calcinose , Interleucinas , Animais , Anti-Inflamatórios/farmacologia , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/tratamento farmacológico , Cálcio/metabolismo , Caspases/metabolismo , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/farmacologia , Proteínas Matrilinas/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese , Receptores de Interleucina-9/genética , Proteínas Recombinantes/farmacologia
6.
Front Immunol ; 13: 891570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493479

RESUMO

This study tested the hypothesis that Toll-like receptor 2 (TLR2) augments the inflammatory responses and adverse remodeling in aging hearts to exacerbate myocardial injury and cardiac dysfunction. Methods: Old (20-22 months old) and adult (4-6 months old) mice of C57BL/6 wild-type and TLR2 knockout (KO) were subjected to coronary artery ligation (30 minutes) and reperfusion (3 or 14 days). Left ventricle function was assessed using a pressure-volume microcatheter. Cardiac infarct size was determined by histology. Levels of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase 9 (MMP 9), and collagen I in non-ischemic myocardium were assessed by immunoblotting. Monocyte chemoattractant protein-1 (MCP-1), keratinocyte chemoattractant (KC), and interleukin-6 (IL-6) levels in ischemic and non-ischemic myocardium were measured by enzyme-linked immunosorbent assay (ELISA). TLR2 expression in the myocardium of untreated wild type mice was also measured by immunoblotting. Results: Higher levels of MCP-1, KC, IL-6 were induced in both ischemic and non-ischemic myocardium of old wild type mice at day 3 and 14 following ischemia/reperfusion (I/R) than those of adult wild type mice. The hyper-inflammatory responses to I/R in aging hearts were associated with elevated levels of myocardial TLR2. TLR2 KO markedly down-regulated the expression of MCP-1, KC, IL-6, ICAM-1 and VCAM-1 in aging hearts at day 3 and 14 following I/R. The down-regulated inflammatory activity in aging TLR2 KO hearts was associated with attenuated production of MMP 9 and collagen I at day 14 and resulted in reduced infarct size and improved cardiac function. Conclusion: Elevated expression of myocardial TLR2 contributes to the mechanism by which aging exacerbates the inflammatory responses, adverse remodeling and cardiac dysfunction following myocardial I/R in aging.


Assuntos
Cardiopatias , Traumatismo por Reperfusão , Envelhecimento/fisiologia , Animais , Colágeno , Infarto , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6 , Isquemia , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like/metabolismo , Molécula 1 de Adesão de Célula Vascular
7.
Inflamm Res ; 71(5-6): 681-694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411432

RESUMO

OBJECTIVE: Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS: Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against ß2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS: AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte ß2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing ß2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION: Monocyte ß2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.


Assuntos
Valva Aórtica , Monócitos , Valva Aórtica/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Proteínas Matrilinas/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo
8.
Mol Med ; 28(1): 5, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062861

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent heart valve disorder in the elderly. Valvular fibrocalcification is a characteristic pathological change. In diseased valves, monocyte accumulation is evident, and aortic valve interstitial cells (AVICs) display greater fibrogenic and osteogenic activities. However, the impact of activated monocytes on valular fibrocalcification remains unclear. We tested the hypothesis that pro-inflammatory mediators from activated monocytes elevate AVIC fibrogenic and osteogenic activities. METHODS AND RESULTS: Picro-sirius red staining and Alizarin red staining revealed collagen and calcium depositions in cultured human AVICs exposed to conditioned media derived from Pam3CSK4-stimulated monocytes (Pam3 CM). Pam3 CM up-regulated alkaline phosphatase (ALP), an osteogenic biomarker, and extracellular matrix proteins collagen I and matrix metalloproteinase-2 (MMP-2). ELISA analysis identified high levels of RANTES and TNF-α in Pam3 CM. Neutralizing RANTES in the Pam3 CM reduced its effect on collagen I and MMP-2 production in AVICs while neutralizing TNF-α attenuated the effect on AVIC ALP production. In addition, Pam3 CM induced NF-κB and JNK activation. While JNK mediated the effect of Pam3 CM on collagen I and MMP-2 production, NF-κB was critical for the effect of Pam3 CM on ALP production in AVICs. CONCLUSIONS: This study demonstrates that activated monocytes elevate the fibrogenic and osteogenic activities in human AVICs through a paracrine mechanism. TNF-α and RANTES mediate the pro-fibrogenic effect of activated monocytes on AVICs through activation of JNK, and TNF-α also activates NF-κB to elevate AVIC osteogenic activity. The results suggest that infiltrated monocytes elevate AVIC fibrocalcific activity to promote CAVD progression.


Assuntos
Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/etiologia , Calcinose/metabolismo , Suscetibilidade a Doenças , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Valva Aórtica/metabolismo , Biomarcadores , Células Cultivadas , Colágeno/metabolismo , Meios de Cultivo Condicionados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos
9.
Fish Shellfish Immunol ; 104: 686-692, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562866

RESUMO

Litopenaeus vannamei (Pacific white shrimp) is one of the most commercially important varieties of shrimp cultivated in the world. Shrimp farming is a high-risk, capital-intensive industry that is susceptible to periodic outbreaks of diseases caused by viral and bacterial pathogens. Thus, there is a need to develop economically viable methods of disease control. The hepatopancreas of crustaceans are known to have an important role in their innate immune response. In this study, we have explored the immune response of the hepatopancreas from L. vannamei fed with trans-vp28 gene Synechocystis sp. PCC6803 using iTRAQ-based proteomics. A total of 214 differentially expressed proteins (DEPs) were identified, of which 143 were up-regulated and 71 were down-regulated. These proteins have diverse roles in the cell cytoskeleton and cell phagocytosis, antioxidant defense process and the response of immune related proteins. Among these proteins, the immunity associated with the functional annotation of L. vannamei was further analysed. In addition, 4 DEPs (act1, N/A, H and C7M84_013542) were analysed using parallel reaction monitoring (PRM). This is the first report of proteomics in the hepatopancreas of L. vannamei immunized with trans-vp28 gene Synechocystis sp. PCC6803.


Assuntos
Proteínas de Artrópodes/imunologia , Hepatopâncreas/imunologia , Imunidade Inata , Penaeidae/imunologia , Proteoma/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Hepatopâncreas/metabolismo , Imunização , Microrganismos Geneticamente Modificados/fisiologia , Penaeidae/metabolismo , Proteoma/metabolismo , Proteômica , Synechocystis/fisiologia , Proteínas do Envelope Viral/genética
10.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074942

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is a chronic inflammatory disease that manifests as progressive valvular fibrosis and calcification. An inflammatory milieu in valvular tissue promotes fibrosis and calcification. Aortic valve interstitial cell (AVIC) proliferation and the over-production of the extracellular matrix (ECM) proteins contribute to valvular thickening. However, the mechanism underlying elevated AVIC fibrogenic activity remains unclear. Recently, we observed that AVICs from diseased aortic valves express higher levels of neurotrophin 3 (NT3) and that NT3 exerts pro-osteogenic and pro-fibrogenic effects on human AVICs. HYPOTHESIS: Pro-inflammatory stimuli upregulate NT3 production in AVICs to promote fibrogenic activity in human aortic valves. METHODS AND RESULTS: AVICs were isolated from normal human aortic valves and were treated with lipopolysaccharide (LPS, 0.20 µg/mL). LPS induced TLR4-dependent NT3 production. This effect of LPS was abolished by inhibition of the Akt and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathways. The stimulation of TLR4 in human AVICs with LPS resulted in a greater proliferation rate and an upregulated production of matrix metallopeptidases-9 (MMP-9) and collagen III, as well as augmented collagen deposition. Recombinant NT3 promoted AVIC proliferation in a tropomyosin receptor kinase (Trk)-dependent fashion. The neutralization of NT3 or the inhibition of Trk suppressed LPS-induced AVIC fibrogenic activity. CONCLUSIONS: The stimulation of TLR4 in human AVICs upregulates NT3 expression and promotes cell proliferation and collagen deposition. The NT3-Trk cascade plays a critical role in the TLR4-mediated elevation of fibrogenic activity in human AVICs. Upregulated NT3 production by endogenous TLR4 activators may contribute to aortic valve fibrosis associated with CAVD progression.


Assuntos
Cardiopatias Congênitas/patologia , Doenças das Valvas Cardíacas/patologia , Neurotrofina 3/metabolismo , Receptor 4 Toll-Like/metabolismo , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide , Carbazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Feminino , Cardiopatias Congênitas/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Humanos , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Regulação para Cima/efeitos dos fármacos
11.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861929

RESUMO

Aortic valve interstitial cells (AVICs) play a major role in valvular calcification associated with calcific aortic valve disease (CAVD). Although AVICs from diseased valves display a pro-osteogenic phenotype, the underlying mechanism causing this remains unclear. MicroRNA-204 (miR-204) is a negative regulator of osteoblast differentiation. We sought to analyze miR-204 expression in diseased human aortic valves and determine the role of this miR in AVIC osteogenic activity associated with CAVD pathobiology. In situ hybridization and PCR analysis revealed miR-204 deficiency in diseased valves and in AVICs from diseased valves. MiR-204 mimic suppressed alkaline phosphatase (ALP) expression and calcium deposition in AVICs from diseased valves. MiR-204 antagomir enhanced ALP expression in AVICs from normal valves through induction of Runx2 and Osx, and expression of miR-204 antagomir in mouse aortic valves promoted calcium deposition through up-regulation of Runx2 and Osx. Further, miR-204 mimic suppressed the osteogenic responses to TGF-ß1 in AVICs of normal valves. In conclusion, miR-204 deficiency contributes to the mechanism underlying elevated osteogenic activity in diseased aortic valves, and miR-204 is capable of reversing the pro-osteogenic phenotype of AVICs of diseased valves and suppressing AVIC osteogenic response to stimulation. Exogenous miR-204 may have therapeutic potential for inhibiting valvular calcification associated with CAVD progression.


Assuntos
Estenose da Valva Aórtica/genética , Valva Aórtica/patologia , Calcinose/genética , Regulação para Baixo , MicroRNAs/genética , Osteogênese , Idoso , Animais , Valva Aórtica/citologia , Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
12.
J Surg Res ; 213: 243-250, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28601321

RESUMO

BACKGROUND: Overproduction of extracellular matrix (ECM) protein by aortic valve interstitial cells (AVICs) plays an important role in valvular sclerosis (thickening) associated with the early pathobiology of aortic stenosis. Accumulation of oxidized low-density lipoprotein (oxLDL) is observed in sclerotic aortic valve and may have a mechanistic role in valvular disease progression. Lysophosphatidylcholine (LysoPC) is a component of oxLDL and has multiple biological activities. This study was to test the hypothesis that oxLDL and LysoPC upregulate ECM protein production in human AVICs. METHODS AND RESULTS: AVICs were isolated from normal human aortic valves. Cells were treated with oxLDL (40 µg/mL) or LysoPC (40 µmol/L). Immunoblotting was applied to analyze ECM proteins (collagens I and III and biglycan) in cell lysate and Picrosirius red staining was used to examine collagen deposition. Both oxLDL and LysoPC upregulated the production of biglycan and collagen I. The upregulation of ECM proteins by LysoPC was preceded by the phosphorylation of Akt and ERK1/2. Inhibition of Akt markedly reduced the effect of LysoPC on ECM protein production and collagen deposition. However, inhibition of ERK1/2 had no effect. CONCLUSIONS: LysoPC upregulates the production of biglycan and collagen I in human AVICs and may mediate the effect of oxLDL on ECM protein production. The Akt pathway appears to be critical in mediating the effect of LysoPC. oxLDL accumulation and generation of LysoPC in the aortic valve tissue may contribute to the mechanism of valvular sclerosis associated with the development and progression of aortic stenosis.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Lipoproteínas LDL/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima , Idoso , Valva Aórtica/citologia , Biglicano/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
13.
Cytokine ; 95: 55-63, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28237874

RESUMO

Myocardial inflammatory responses to endotoxemia are enhanced in old mice, which results in worse cardiac dysfunction. Anti-inflammatory cytokine interleukin (IL)-37 has a broad effect on innate immunoresponses. We hypothesized that IL-37 suppresses myocardial inflammatory responses to protect cardiac function during endotoxemia in old mice. Old (20-24month) wild-type (WT), and IL-37 transgenic (IL-37tg) mice were treated with lipopolysaccharide (LPS, 0.5mg/kg, iv) or normal saline (0.1ml/mouse, iv). Six hours later, left ventricle (LV) function was assessed using a pressure-volume microcatheter. Levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6 in plasma and myocardial tissue, as well as mononuclear cell density in the myocardium, were examined. Cardiac microvascular endothelial cells isolated from WT and IL-37tg mice were treated with LPS (0.2µg/ml) for 0.5-24h. Nuclear factor-kappa B (NF-κB) p65 phosphorylation was examined by immunoblotting, and MCP-1 levels in cell culture supernatant was determined using enzyme-linked immunosorbent assay. LV dysfunction in old WT endotoxemic mice was accompanied by up-regulated MCP-1, myocardial accumulation of mononuclear cells and production of TNF-α, IL-1ß and IL-6. Expression of IL-37 suppressed myocardial inflammatory responses to endotoxemia in old mice, resulting in improved LV function. Treatment of old WT endotoxemic mice with recombinant IL-37 also improved LV function. In vitro experiments revealed that cardiac microvascular endothelial cells from IL-37tg mice had attenuated NF-κB activation and MCP-1 production following LPS stimulation. In conclusion, IL-37 is potent to suppress myocardial inflammation and protects against cardiac dysfunction during endotoxemia in old mice.


Assuntos
Envelhecimento/fisiologia , Endotoxemia/fisiopatologia , Interleucina-1/fisiologia , Função Ventricular Esquerda , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Endotélio Vascular/metabolismo , Endotoxemia/metabolismo , Endotoxemia/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia , Receptor 4 Toll-Like/metabolismo
14.
Proc Natl Acad Sci U S A ; 114(7): 1631-1636, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137840

RESUMO

Calcific aortic valve disease is a chronic inflammatory process, and aortic valve interstitial cells (AVICs) from diseased aortic valves express greater levels of osteogenic factors in response to proinflammatory stimulation. Here, we report that lower cellular levels of IL-37 in AVICs of diseased human aortic valves likely account for augmented expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) following stimulation of Toll-like receptor (TLR) 2 or 4. Treatment of diseased AVICs with recombinant human IL-37 suppresses the levels of BMP-2 and ALP as well as calcium deposit formation. In mice, aortic valve thickening is observed when exposed to a TLR4 agonist or a high fat diet for a prolonged period; however, mice expressing human IL-37 exhibit significantly lower BMP-2 levels and less aortic valve thickening when subjected to the same regimens. A high fat diet in mice results in oxidized low-density lipoprotein (oxLDL) deposition in aortic valve leaflets. Moreover, the osteogenic responses in human AVICs induced by oxLDL are suppressed by recombinant IL-37. Mechanistically, reduced osteogenic responses to oxLDL in human AVICs are associated with the ability of IL-37 to inhibit NF-κB and ERK1/2. These findings suggest that augmented expression of osteogenic factors in AVICs of diseased aortic valves from humans is at least partly due to a relative IL-37 deficiency. Because recombinant IL-37 suppresses the osteogenic responses in human AVICs and alleviates aortic valve lesions in mice exposed to high fat diet or a proinflammatory stimulus, IL-37 has therapeutic potential for progressive calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/efeitos dos fármacos , Calcinose/prevenção & controle , Interleucinas/farmacologia , Osteogênese/efeitos dos fármacos , Idoso , Fosfatase Alcalina/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Feminino , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia
15.
Mol Med ; 23: 863-872, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28079228

RESUMO

BACKGROUND: While cardiac functional recovery is attenuated in the elderly following cardiac surgery with obligatory global myocardial ischemia/reperfusion (I/R), the underlying mechanism remains incompletely understood. We observed previously that human and mouse myocardium releases heat shock protein (HSP) 27 during global I/R. Extracellular HSP27 induces myocardial inflammatory response and plays a role in post-ischemic cardiac dysfunction in adult mouse hearts. OBJECTIVE: This study was to determine the role of extracellular HSP27 and Toll-like receptor 4 (TLR4) in the attenuated functional recovery in aging mouse hearts following global I/R. METHODS AND RESULTS: Hearts isolated from aging (18-24 months) and adult (4-6 months) mice were subjected to ex vivo global I/R. Augmented release of HSP27 in aging hearts is associated with greater production of cytokines (TNF-α and IL-1ß) and worse functional recovery. Anti-HSP27 suppressed the inflammatory response and markedly improved functional recovery in aging hearts. Perfusion of recombinant HSP27 to aging hearts resulted in greater cytokine production and more severe contractile depression in comparison to adult hearts. TLR4 deficiency abolished cytokine production and functional injury in aging hearts exposed to recombinant HSP27. Interestingly, aging hearts had higher TLR4 protein levels and displayed enhanced TLR4-mediated NF-κB activation following HSP27 stimulation or I/R. CONCLUSION: Extracellular HSP27 and TLR4 jointly enhance the inflammatory response and hamper functional recovery following I/R in aging hearts. The enhanced inflammatory response to global I/R and attenuated post-ischemic functional recovery in aging hearts is due, at least in part, to augmented myocardial release of HSP27 and elevated myocardial TLR4 levels.

16.
Oncol Lett ; 12(3): 1971-1974, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27602122

RESUMO

Hepatitis B virus (HBV) X protein (HBx) is implicated in the development of hepatocellular carcinoma (HCC). Yes-associated protein 1 (YAP) is an important proto-oncogene, which is a downstream effector molecule in the Hippo signaling pathway. The aim of the present study was to investigate the association between HBx expression in HCC samples and YAP expression in the Hippo pathway. A total of 20 pathologically confirmed HCC samples, 20 corresponding adjacent non-tumor liver tissues and 5 normal liver tissue samples were collected. The expression of HBx and YAP in the tissues was analyzed by quantitative reverse transcription-polymerase chain reaction and western blot analysis. The intensity and location of YAP expression were analyzed by immunohistochemistry. YAP mRNA and protein expression levels in HCC samples infected with HBV were significantly higher than those of normal liver tissues. Furthermore, YAP expression was positively correlated with HBx expression in HBV-positive HCC samples. Immunohistochemical staining revealed that YAP was predominantly expressed in the nuclei in HBV-positive HCC tissues. YAP expression was significantly decreased in the normal liver tissue and corresponding adjacent liver tissue when compared with the HCC tissues and by contrast to HCC tissues, YAP was predominantly located in the cytoplasm. In conclusion, these results indicate that the YAP gene is a key driver of HBx-induced liver cancer. Therefore, YAP may present a novel target in the treatment of HBV-associated HCC.

17.
Crit Care ; 18(5): 527, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25209241

RESUMO

INTRODUCTION: Endotoxemia and the systemic inflammatory response syndrome have a significant impact on post-surgery outcome, particularly in the elderly. The cytokine response to endotoxin is altered by aging. We tested the hypothesis that vulnerability to endotoxemic cardiac depression increases with aging due to age-related augmentation of myocardial inflammatory responses. METHODS: Adult (4 to 6 months) and old (20 to 22 months) C57/BL6 mice were treated with endotoxin (0.5 mg/kg, iv). Left ventricle (LV) function was assessed using a microcatheter system. Chemokines and cytokines in plasma and myocardium were analyzed by enzyme-linked immunosorbent assay (ELISA). Mononuclear cells in the myocardium were examined using immunofluorescence staining. RESULTS: Old mice displayed worse LV function (cardiac output: 3.0 ± 0.2 mL/min versus 4.4 ± 0.3 mL/min in adult mice) following endotoxin treatment. The exaggerated cardiac depression in old mice was associated with higher levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte chemoattractant (KC) in plasma and myocardium, greater myocardial accumulation of mononuclear cells, and greater levels of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) in plasma and myocardium. Neutralization of MCP-1 resulted in greater reductions in myocardial mononuclear cell accumulation and cytokine production, and greater improvement in LV function in old mice while neutralization of KC had a minimal effect on LV function. CONCLUSION: Old mice have enhanced inflammatory responses to endotoxemia that lead to exaggerated cardiac functional depression. MCP-1 promotes myocardial mononuclear cell accumulation and cardiodepressant cytokines production, and plays an important role in the endotoxemic cardiomyopathy in old mice. The findings suggest that special attention is needed to protect the heart in the elderly with endotoxemia.


Assuntos
Quimiocina CCL2/biossíntese , Endotoxemia/metabolismo , Miocárdio/metabolismo , Envelhecimento/fisiologia , Animais , Biomarcadores/sangue , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/sangue , Quimiocina CCL2/imunologia , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Camundongos Endogâmicos C57BL , Disfunção Ventricular Esquerda
18.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686567

RESUMO

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Assuntos
Evolução Molecular , Genoma/genética , Poríferos/genética , Animais , Apoptose/genética , Adesão Celular/genética , Ciclo Celular/genética , Polaridade Celular/genética , Proliferação de Células , Genes/genética , Genômica , Humanos , Imunidade Inata/genética , Modelos Biológicos , Neurônios/metabolismo , Fosfotransferases/química , Fosfotransferases/genética , Filogenia , Poríferos/anatomia & histologia , Poríferos/citologia , Poríferos/imunologia , Análise de Sequência de DNA , Transdução de Sinais/genética
19.
Zhonghua Yi Xue Za Zhi ; 86(32): 2297-300, 2006 Aug 29.
Artigo em Chinês | MEDLINE | ID: mdl-17064581

RESUMO

OBJECTIVE: To investigate the effects of simvastatin (SIM) on homocysteine (HCY)-induced endothelial dysfunction and inflammatory response. METHODS: Human umbilical vein endothelial cells (HUVECs) were isolated from the umbilical cords from healthy lying-in women and cultured and added with HCY of the concentrations of 0.1, 0.25, 0.5, and 1 mmol/L respectively, or HCY 0.25 mmol/L + SIM of the concentrations of 1, 10 and 20 micromol/L respectively for 1 hour. ELISA was used to detect the cell viability with MTT method. Western blotting was used to examine the protein expression of the cell inflammatory factors, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, macrophage chemoattractant protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1, ELISA was used to detect the contents of the cell inflammatory factors. RESULTS: HCY of different doses inhibited the viability of HUVECs dose-dependently (all P < 0. 01). The survival rates of the HCY-induced HUVECs pretreatment by SIM of the concentrations of 1, 10 and 20 micromol/L for 1 hour were 1.72 +/- 0.03 times, 2.54 +/- 0.09 times, and 3.14 +/- 0.11 times respectively that of the control group (all P < 0. 01). HCY of different concentration of 0.25 mmol/L increased the protein expression of TNF-alpha, IL-6, MCP-1, and ICAM-1 significantly; however, the expression levels of TNF-alpha, IL-6, MCP-1, and ICAM-1 of the 0.25 mmol/L HCY-treated HUVECs that were pretreated by SIM of the concentration of 10 micromol/L for 1 hour were, 0.23 +/- 0.05, 0.14 +/- 0.03, 0.13 +/- 0.04, and 0.21 +/- 0.07 respectively, not significantly different from those at the time of 0 hour (all P > 0.05). CONCLUSION: Simvastatin inhibits the homocysteine-induced endothelial impairment and inflammatory response.


Assuntos
Células Endoteliais/efeitos dos fármacos , Homocisteína/farmacologia , Sinvastatina/farmacologia , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Veias Umbilicais/citologia , Molécula 1 de Adesão de Célula Vascular/biossíntese
20.
J Immunol ; 173(11): 6547-63, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15557145

RESUMO

As part of the innate immune system, human NK cells play a critical role early in the systemic host defense against pathogens and tumor cells. Recent studies suggest a more complex view of NK cell behavior, as different functions and tissue localizing capabilities seem to be preferentially assigned to distinct subpopulations of NK cells, CD56(dim)CD16(+) or CD56(bright)CD16(-). In this study, we used oligonucleotide microarrays to compare the expression profile of approximately 20,000 genes in three NK cell subpopulations: peripheral blood-derived CD56(dim)CD16(+), CD56(bright)CD16(-), and in vitro-activated CD16(+) NK cells. The differential expression of selected genes was verified by flow cytometry and functional assays. When comparing CD56(dim)CD16(+) and CD56(bright)CD16(-) subsets, a new heterogeneous molecular basis for the functional and developmental differences between these two subsets was revealed. Furthermore, systematic analysis of transcriptional changes in activated CD16(+) NK cells provided us with a better understanding of NK function in inflamed tissues. We highlight a number of genes that were overexpressed upon activation (e.g., OX40 ligand, CD86, Tim3, galectins, etc.), that enable these cells to directly cross-talk with other innate and adaptive immune effectors. The overexpressed genes assign novel intriguing immunomodulatory functions to activated NK cells, in addition to their potent cytotoxic abilities.


Assuntos
Citotoxicidade Imunológica/genética , Perfilação da Expressão Gênica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Antígeno CD56/biossíntese , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilação da Expressão Gênica/métodos , Homeostase/genética , Homeostase/imunologia , Humanos , Fatores Imunológicos/biossíntese , Fatores Imunológicos/genética , Imunofenotipagem , Células Jurkat , Células Matadoras Naturais/citologia , Ativação Linfocitária/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptores de IgG/biossíntese , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA