Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(1): 12, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38147164

RESUMO

To conduct a precise health risk assessment of heavy metals (HMs) in soil, it is imperative to ascertain the primary sources of potential health risks. In this study, we conducted comprehensive measurements of HMs, specifically focusing on the accumulation of Cu, Cd, Sb, Zn, and Pb in local soil, which may pose threats to environmental quality. To achieve our objective, we employed a method that combines positive matrix factorization with a health risk assessment model to quantify the health risks associated with specific sources. The results obtained from the geo-accumulation index indicate that the majority of HMs found in the local soil are influenced by anthropogenic activities. Among these sources, local industrial-related activities contributed the largest proportion of HMs to the soil at 34.7%, followed by natural sources at 28.7%, mining and metallurgy-related activities at 28.2%, and traffic-related activities at 8.40%. Although the non-carcinogenic and carcinogenic risks associated with individual HMs were found to be below safety thresholds, the cumulative health risks stemming from total HMs exceeded safety limits for children. Moreover, the unacceptable health risks for children originating from industrial-related activities, natural sources, and mining and metallurgy-related activities were primarily concentrated in proximity to mining sites and industrial areas within the local region. This investigation furnishes valuable insights that can aid governmental authorities in formulating precise control policies to mitigate health threats posed by soils in polymetallic mining areas.


Assuntos
Metalurgia , Metais Pesados , Criança , Humanos , China , Metais Pesados/toxicidade , Medição de Risco , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36078702

RESUMO

This study aimed to assess the pollution levels, sources, and human health risks of heavy metals in street dust from a typical industrial district in Wuhan City, Central China. In total, 47 street dust samples were collected from the major traffic arteries and streets around Wuhan Iron and Steel (Group) Company (WISC) in Qingshan District, Wuhan. The concentrations of heavy metals (Cr, Mn, Ni, Zn, Fe, Cu, and Cd) in street dust were determined by atomic absorption spectroscopy. Results indicated that the mean concentrations of Zn (249.71 mg/kg), Cu (51.15 mg/kg), and Cd (0.86 mg/kg) in street dust were higher than their corresponding soil background values in Hubei Province. Heavy metal enrichment is closely related to urban transportation and industrial production. The pollution level of heavy metals in street dust was assessed using the geo-accumulation method (Igeo) and potential ecological risk assessment (PERI). Based on the Igeo value, Cr, Mn, Fe, and Ni showed no pollution, Zn and Cu showed light to moderate contamination, and Cd showed moderate contamination. The PERI values of heavy metals in street dust ranged between 76.70 and 7027.28, which represents a medium to high potential ecological risk. Principal component analysis showed that the sources of heavy metals in street dust were mainly influenced by anthropogenic activities. Among the studied metals, Cu, Cr, Zn, Fe, and Mn mainly come from industrial processes, while Ni and Cd come from traffic exhaust. The non-carcinogenic risk indexes of heavy metals for children and adults are ranked as Cr > Cu > Ni > Cd > Zn. The health risks to children through the different exposure pathways are higher than those for adults. Hand-to-mouth intake is the riskiest exposure pathway for non-carcinogenic risk. In addition, Cr, Ni, and Cd do not pose a carcinogenic risk for the residents.


Assuntos
Poeira , Metais Pesados , Adulto , Cádmio/análise , Carcinógenos/análise , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Medição de Risco , Urbanização
3.
Bull Environ Contam Toxicol ; 105(6): 941-950, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170305

RESUMO

Atmospheric particulate matters in nine size fractions were sampled at Huangshi city, Hubei province. Elemental concentrations occurred unimodal size distribution for Zn, Pb and Ni, dimodal distribution for Ca, S, Fe and Ti, and trimodal distribution for Cl, K, Mn, Cu and Cr. Enrichment factor and principal component analysis identified the main sources from crustal material, biomass burning, waste incineration, vehicular and industrial emission. As for the non-carcinogenic health risk through inhalation, there were certain potential risks for Mn and Sb for children, and Pb for children and adults in PM2.5. It showed certain potential risks for Mn, Sb and Pb for children and adults in PM10. As for the carcinogenic health risk through inhalation, Cr in PM2.5 and Ni, Co and Cr in PM10 indicated unacceptable risk for children and adults. Meanwhile, Co and Ni in PM2.5 represented acceptable risk for children.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Adulto , Biomassa , Carcinógenos/análise , Criança , China , Cidades , Saúde , Humanos , Incineração , Indústrias , Metais Pesados/análise , Análise de Componente Principal , Medição de Risco , Titânio/análise , Urbanização
4.
Ecotoxicol Environ Saf ; 205: 111155, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846298

RESUMO

Twenty dust samples collected from Wuchang and Wuhan Railway Stations, the biggest transport stations in the mega traffic hub city in Central China, were analyzed for polycyclic aromatic hydrocarbons (PAHs) to investigate the concentration, sources apportionment, and relationship with black carbon (BC) and assess the health risk. The results suggested that the concentrations of PAHs, BC and TOC in Wuhan Railway Station (WHRS) (PAHs = 5940 ± 1920 ng g-1, BC = 53.2 ± 23.1 mg g-1 and TOC = 80.7 ± 44.4) were twice higher than those in Wuchang Railway Station (WCRS) (PAHs = 2580 ± 1630 ng g-1, BC = 20.4 ± 14.3 mg g-1 and TOC = 33.9 ± 20.1 mg g-1). Moreover, the 3 - and 4 - rings PAHs were major PAHs in railway station dust. The composition pattern of PAHs in these railway station dusts had a common characteristic with HMW-PAHs contribution. The results of source identification revealed that different local development features and energy consumption of trains would influence the sources of PAHs and BC. PAHs and BC were most likely related to industrial activities in WHRS. Coal and biomass combustion may influence the PAHs components and BC distribution in WCRS. Moreover, BC had played an important role in retaining PAHs in urban railway stations. Especially in WHRS, BC would more likely to absorb the high molecular weight PAHs, such as 4 -ring (p<0.05), 5 -ring (p<0.05) and 6 -ring (p<0.05) PAHs; while BC just played limited roles in the binding of volatile and semi-volatile organic pollutants, such as 2 -ring and 3 -ring PAHs. With the coexistence of BC and PAHs, passengers would face significant potential health risks by exposure to toxic dust in railway stations, especially for children. The cancer risk in WHRS was almost twice higher than that in WCRS, and it would tend to be stable by a semi-confined structure in the platform area.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Ferrovias , Fuligem/análise , Urbanização , Criança , China , Cidades , Carvão Mineral/análise , Humanos , Indústrias , Medição de Risco
5.
Environ Sci Pollut Res Int ; 26(17): 16855-16867, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29047059

RESUMO

Aerosol samples of PM2.5 and PM10 were collected every 6 days from March 2012 to February 2013 in Huangshi, a typical industrial city in central China, to investigate the characteristics, relationships, and sources of carbonaceous species. The PM2.5 and PM10 samples were analyzed for organic carbon (OC), elemental carbon (EC), char, and soot using the thermal/optical reflectance (TOR) method following the IMPROVE_A protocol. PM2.5 and PM10 concentrations ranged from 29.37 to 501.43 µg m-3 and from 50.42 to 330.07 µg m-3, with average levels of 104.90 and 151.23 µg m-3, respectively. The 24-h average level of PM2.5 was about three times the US EPA standard of 35 µg m-3, and significantly exceeds the Class II National Air Quality Standard of China of 75 µg m-3. The seasonal cycles of PM mass and OC concentrations were higher during winter than in summer. EC and char concentrations were generally highest during winter but lowest in spring, while higher soot concentrations occurred in summer. This seasonal variation could be attributed to different seasonal meteorological conditions and changes in source contributions. Strong correlations between OC and EC were found for both PM2.5 and PM10 in winter and fall, while char and soot showed a moderate correlation in summer and winter. The average OC/EC ratios were 5.11 and 4.46 for PM2.5 and PM10, respectively, with individual OC/EC ratios nearly always exceeding 2.0. Higher char/soot ratios during the four seasons indicated that coal combustion and biomass burning were the major sources for carbonaceous aerosol in Huangshi. Contrary to expectations, secondary organic carbon (SOC) which is estimated using the EC tracer method exhibited spring maximum and summer minimum, suggesting that photochemical activity is not a leading factor in the formation of secondary organic aerosols in the study area. The contribution of SOC to OC concentration for PM2.5 and PM10 were 47.33 and 45.38%, respectively, implying that SOC was an important component of OC mass. The serious air pollution in haze-fog episode was strongly correlated with the emissions of pollutants from biomass burning and the meteorological conditions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Biomassa , Carbono/análise , China , Cidades , Carvão Mineral , Tamanho da Partícula , Estações do Ano , Fuligem/análise
6.
Huan Jing Ke Xue ; 38(1): 170-179, 2017 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965044

RESUMO

8 surface sediments and 8 water samples were collected from the Daye Lake in August 2015.The 16 kinds of EPA control polycyclic aromatic hydrocarbons (PAHs) were analyzed by GC-MS.The results showed that the PAHs concentrations of surface sediments and water ranged from 35.94 ng·g-1 to 2032.73 ng·g-1 and from 27.94 ng·L-1 to 242.95 ng·L-1,with average contents of 940.61 ng·g-1 and 107.77ng·L-1,respectively.The distribution of PAHs in surface sediments indicated that the contents in the center samples were higher than those in the bank samples,but the water showed nearly the opposite tendency.The 4-5 rings high molecular weight PAHs were the main components in the surface sediments,and the 2,4 and 5 rings PAHs were given priority in water.Compared with the other domestic and oversea lakes,the PAHs pollution of the Daye Lake was at a moderate level.Source apportionment showed that the PAHs in surface sediments and water from the Daye Lake came from the combustion source,HWM-PAHs were the dominant part of the PAHs in the sediment,reflecting the sediment PAHs pollution under the effects of mining and smelting over a long period;All monomer PAHs and total PAHs content in sediment did not exceed the ERM and FEL limiting values,showing that there was no particularly serious ecological risk caused by PAHs in the surface sediments from the Daye Lake;the incremental lifetime cancer risks assessment showed that the uptake risk of PAHs in Daye Lake water through the ingestion and dermal absorption were both in the acceptable range recommended by the USEPA,but all sites had higher risk than the acceptable risk level recommended by the Sweden environmental protection agency and Royal society.The pollution of seven carcinogenic PAHs needs prevention and control.


Assuntos
Monitoramento Ambiental , Lagos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Exposição Ambiental , Sedimentos Geológicos , Humanos , Medição de Risco
7.
Huan Jing Ke Xue ; 38(6): 2355-2363, 2017 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965353

RESUMO

The surface water and surface sediments were collected from Daye Lake in April 2014. The concentrations of heavy metals were determined by atomic absorption spectroscopy. The pollution potential health risk and ecological risk of heavy metals in water and sediment were assessed by the health risk assessment model and the potential ecological risk index method. The results showed that the concentrations of the heavy metals (Ni, Cd, Cu and Pb) was 49.27 µg·L-1, 2.19 µg·L-1, 12.18 µg·L-1, 12.13 µg·L-1(water) and 78.46 mg·kg-1, 77.13 mg·kg-1, 650.13 mg·kg-1 and 134.22 mg·kg-1 (sediment). Enrichment coefficient indicated that the enrichment of Cd, Cu and Pb was more serious, especially the accumulation of Cd was the most obvious. Compared to typical lakes in China, the contents of heavy metals in water and sediment were relatively high. The spatial pollutant distribution of the heavy metals in water and sediment all presented that the concentrations of the heavy metals were relatively higher in east and west of Daye Lake, relatively more uniform in the middle, and their origins were mainly from human activities. The results of environmental risk indicated that the carcinogens and chemical non-carcinogens health risk values of heavy metals by drinking water pathway were 9.77E-08~1.63E-05a-1. Therefore, the pollution of Ni and Cd should be the primary control target for environmental health risk management. The descending order of pollution degree of four metals in sediment was Cd> Cu> Pb> Ni, and Cd was the main contributor of the potential ecological risk elements.

8.
Artigo em Inglês | MEDLINE | ID: mdl-27187427

RESUMO

To examine levels, health risks, sources, and spatial distributions of potentially toxic elements in settled dust over Beijing urban area, 62 samples were collected mostly from residential building outdoor surfaces, and their <63 µm fractions were measured for 12 potentially toxic elements. The results show that V, Cr, Mn, Co, Ni, and Ba in dust are from predominantly natural sources, whereas Cu, Zn, As, Cd, Sb, and Pb mostly originate from anthropogenic sources. Exposure to these elements in dust has significant non-cancer risks to children but insignificant to adults. Cancer risks of Cr, Co, Ni, As, and Cd via inhalation and dermal contact are below the threshold of 10(-6)-10(-4) but As via dust ingestion shows a tolerable risk. The non-cancer risks to children are contributed mainly (75%) by As, Pb, and Sb, and dominantly (92%) via dust ingestion, with relatively higher risks mainly occurring in the eastern and northeastern Beijing urban areas. Although Cd, Zn, and Cu in dust are heavily affected by anthropogenic sources, their health risks are insignificant. Source appointments suggest that coal burning emissions, the dominant source of As, are likely the largest contributors to the health risk, and traffic-related and industrial emissions are also important because they contribute most of the Pb and Sb in dust.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Poeira/análise , Metais Pesados/análise , Adulto , Pequim , Criança , Monitoramento Ambiental/métodos , Humanos , Indústrias , Medição de Risco , Emissões de Veículos
9.
Environ Geochem Health ; 37(5): 891-903, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25239676

RESUMO

Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.


Assuntos
Carcinógenos/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Carvão Mineral , Indústrias , Medição de Risco
10.
Chemosphere ; 134: 512-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25543159

RESUMO

Urban road dusts are carriers of polycyclic aromatic compounds (PACs) and are therefore considered to be a major source of contamination of other environmental compartments and a source of exposure to PACs for urban populations. We determined the occurrence, composition pattern and sources of several PACs (29 alkyl- and parent-PAHs, 15 oxygenated-PAHs (OPAHs), 4 azaarenes (AZAs), and 11 nitrated-PAHs (NPAHs)) in twenty urban road dusts and six suburban surface soils (0-5cm) from Xi'an, central China. The average concentrations of ∑29PAHs, ∑4AZAs, ∑15OPAHs, and ∑11NPAHs were 15767, 673, 4754, and 885 n gg(-1) in road dusts and 2067, 784, 854, and 118 ng g(-1) in surface soils, respectively. The concentrations of most individual PACs were higher in street dusts than suburban soils, particularly for PACs with molecular weight>192 g mol(-1). The enrichment factors of individual PACs were significantly positively correlated with log KOA and log KOW, indicating an increasing deposition and co-sorption of the PACs in urban dusts with decreasing volatility and increasing hydrophobicity. Significant correlations between the concentrations of individual and sum of PACs, carbon fractions (soot and char), and source-characteristic PACs (combustion-derived PAHs and retene, etc.), indicated that PAHs, OPAHs and AZAs were mostly directly emitted from combustion activities and had similar post-emission fates, but NPAHs were possibly more intensely photolyzed after deposition as well as being emitted from vehicle exhaust sources. The incremental lifetime cancer risk (ILCR) resulting from exposure to urban dust bound-PACs was higher than 10(-6), indicating a non-negligible cancer risk to residents of Xi'an.


Assuntos
Poeira/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Emissões de Veículos/análise , Adulto , Carbazóis/análise , Criança , China , Cidades , Exposição Ambiental , Humanos , Neoplasias/induzido quimicamente , Nitratos , Nitrogênio/análise , Óxidos de Nitrogênio , Oxigênio/análise , Quinolinas/análise , Medição de Risco , Solo
11.
PLoS One ; 8(12): e83462, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358286

RESUMO

Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.


Assuntos
Carbono/análise , Poeira/análise , Monitoramento Ambiental/métodos , Óptica e Fotônica/métodos , Solo/química , China , Cidades , Humanos , Fuligem/análise , Temperatura
12.
Chemosphere ; 91(11): 1462-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23395362

RESUMO

Three techniques were used to measure black carbon (BC) in samples from Chinese loess-paleosol sequences. The results obtained by (1) chemo-thermal oxidation (CTO, performed two ways), (2) acid dichromate oxidation (Cr2O7), and (3) thermal-optical reflectance (TOR) were intercompared because prior studies have shown that the methods can yield disparate results. BC concentrations did vary among the methods, most likely because they measured different components of the BC continuum, but the high-temperature BC (soot) determined by CTO was correlated with the BC and soot obtained by TOR. The CTO and TOR methods both yielded statistically significant linear relationships for loess and lake sediments that had incremental additions of a standard (SRM-1649a). The results also showed that charred material was more abundant in these test sediments than soot carbon. Data for BC in Luochuan loess generated using TOR showed a trend similar to that of magnetic susceptibility, that is, high BC and large susceptibilities during the last interglacial and low values for both variables in the last glacial. The results thus indicate that the TOR method is well suited for studies of sedimentary materials and that more biomass burned during the last interglacial than in the last glacial.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluentes do Solo/análise , Fuligem/análise , China , Cromatos/química , Temperatura Alta , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA