Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(7): 1777-1796, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348566

RESUMO

Heavy metal pollution poses a significant risk to human health and wreaks havoc on agricultural productivity. Phytoremediation, a plant-based, environmentally benign, and cost-effective method, is employed to remove heavy metals from contaminated soil, particularly in agricultural or heavy metal-sensitive lands. However, the phytoremediation capacity of various plant species and germplasm resources display significant genetic diversity, and the mechanisms underlying these differences remain hitherto obscure. Given its potential benefits, genetic improvement of plants is essential for enhancing their uptake of heavy metals, tolerance to harmful levels, as well as overall growth and development in contaminated soil. In this study, we uncover a molecular cascade that regulates cadmium (Cd2+) tolerance in cotton, involving GhRCD1, GhbHLH12, GhMYB44, and GhHMA1. We identified a Cd2+-sensitive cotton T-DNA insertion mutant with disrupted GhRCD1 expression. Genetic knockout of GhRCD1 by CRISPR/Cas9 technology resulted in reduced Cd2+ tolerance in cotton seedlings, while GhRCD1 overexpression enhanced Cd2+ tolerance. Through molecular interaction studies, we demonstrated that, in response to Cd2+ presence, GhRCD1 directly interacts with GhbHLH12. This interaction activates GhMYB44, which subsequently activates a heavy metal transporter, GhHMA1, by directly binding to a G-box cis-element in its promoter. These findings provide critical insights into a novel GhRCD1-GhbHLH12-GhMYB44-GhHMA1 regulatory module responsible for Cd2+ tolerance in cotton. Furthermore, our study paves the way for the development of elite Cd2+-tolerant cultivars by elucidating the molecular mechanisms governing the genetic control of Cd2+ tolerance in cotton.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Cádmio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biodegradação Ambiental , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Environ Res ; 247: 118255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266890

RESUMO

Lewis acids of solid catalysts have been featured for a pivotal role in promoting various reactions. Regarding the oxidation protocol to remove formaldehyde, the inherent drawback of the best-studied MnO2 materials in acidic sites has eventually caused deficiency of active hydroxyls to sustain low-temperature activity. Herein, the cryptomelane-type MnO2 was targeted and it was tuned via incorporation of Zr metal, exhibiting great advances in not only the complete HCHO-to-CO2 degradation but also cycling performance. Zr species were existent in doping state in the MnO2 lattice, rendering lower crystallinity and breaking the regular growth of MnO2 crystallites, which thereby tripled surface area and created larger volume of smaller mesopores. Meantime, the local electronic properties of Mn atoms were also changed by Zr doping, i.e., more low-valence Mn species were formed due to the electron transfer from Zr to Mn. The results of infrared studies demonstrate the higher possession of Lewis acid sites on ZrMn, and this high degree of electrophilic agents favored the production of hydroxyl species. Furthermore, the reactivity of surface hydroxyls, as investigated by CO temperature programmed reduction and temperature programmed desorption of adsorbed O2, was obviously improved as well after Zr modification. It is speculated jointly with the characterizations of the post-reaction catalysts that the accelerated production of active hydroxyls helped rapidly convert formaldehyde into key intermediate-formate, which was then degraded into CO2, avoiding the side reaction path with undesired intermediate-hydrocarbonate-over the pristine MnO2, where active sites were blocked and formaldehyde oxidation was inhibited. Additionally, Zr decoration could stabilize Lewis acidity to be more resistant to heat degeneration, and this merit brought about advantageous thermal recyclability for cycled application.


Assuntos
Ácidos de Lewis , Óxidos , Óxidos/química , Compostos de Manganês/química , Dióxido de Carbono , Formaldeído/química , Catálise
3.
Environ Res ; 235: 116683, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459945

RESUMO

Oxide supported noble metals are extensively investigated for ambient formaldehyde oxidation, and the Ag-CoOx complex is one promising combination in terms of cost and activity. Further, we previously observed that cooperating Ag with Li + greatly boosted formaldehyde degradation on CoOx. Yet, there is still room for improvement in removal efficiency, mineralization capacity and resistance to severe conditions. These objectives could be realized via strategically formulating the Li+ sites of Li-CoOx composite in this sister study. Three samples with Li + ---Co3+-O2- connections (L-CO), spinel Li+ (LCO-S) and layered Li+ (LCO-L) were obtained at low (300 °C), moderate (500 °C) and high (700 °C) temperatures, respectively. The specific Li+ positions and componential interaction were demonstrated by Hyperspectral imaging (HSI), XRD, SEM, TEM, HAADF mapping, UV-vis DRS and XPS. Moreover, the effect of reactive oxygen exposure on catalytic oxidation of formaldehyde (330-350 mg/m3) was disclosed through CO-TPR and O2-TPD. Compared with the LCO-S and LCO-L, L-CO exhibited dominant formaldehyde degradation due to the larger content of surface oxygen. After Ag decoration, the Li+---Co3+-O2- connections uniquely caused a strong binding of Ag species with catalyst host, which boosted the amount of reactive oxygen and finally resulted in an even higher elimination of ∼73% (CO2 yield = âˆ¼21%), 47% higher than that of the L-CO (CO2 yield = âˆ¼6%). But in contrast, the Ag@LCO-S only achieved ∼53% removal (CO2 yield = âˆ¼9%) and Ag modification was powerless in altering the inertness of LCO-L, demonstrating that the chemical environment of alkali metal is crucial to effectively tuning the catalyst activity. The advantage of Ag@L-CO in formaldehyde depollution was further reflected from its much better resistance to moisture and aromatic compound omnipresent in indoor air. For the first time, this study extended the understanding of the alkali-metal-promoted formaldehyde oxidation reaction to an in-depth level.


Assuntos
Dióxido de Carbono , Formaldeído , Oxirredução , Formaldeído/química , Óxidos/química , Oxigênio/química
4.
Environ Res ; 217: 114938, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436556

RESUMO

To obtain a versatile formaldehyde oxidation material, simultaneously increasing the oxidative ability, recyclability and deactivation repellence (e.g., enduring the interference from moisture and aromatic compound omnipresent in indoor air) is of great significance. Herein, the above properties of α-MnO2 were synchronously updated via one step treatment in oxalic acid (H2C2O4), and an in-depth understanding of the surface properties-performance relationship was provided by systematic characterizations and designed experiments. Compared with the pristine sample, XPS, ESR, O2-TPD, CO-TPR and pyridine-IR reveal that H2C2O4 created substantial Mn3+ species on surface, exposing a higher coverage of oxygen vacancies that actively participated in the dissociative activation of gas-phase O2 into reactive chemically adsorbed oxygen (OC), and the abundant Lewis acid sites further enabled the effective O2 activation process. The large amount of oxygen OC promoted the HCHO-to-CO2 conversion and inhibited the accumulation of formate that required a high temperature of 170 °C to be eliminated, thus conspicuously improving the α-MnO2's thermal recovery. The combined H2O-TPD, H2O-preadsorbed CO-TPR, C6H6-TPD and C6H6-preadsorbed CO-TPR investigations shed light on the H2C2O4-induced water and benzene resistance. The notably weakened water and benzene binding strength with the H2C2O4-modified surface together with the unrestrained oxygen OC accounted for the outstanding anti-deactivation performance.


Assuntos
Óxidos , Água , Óxidos/química , Ácido Oxálico , Temperatura , Compostos de Manganês/química , Benzeno , Oxigênio/química , Catálise , Formaldeído/química , Estresse Oxidativo
5.
J Hazard Mater ; 436: 129207, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739729

RESUMO

Single or cooperative incorporation of Ce and Sn elements into α-MnO2 parent were tried to update the catalytic benzene oxidation performance, and the successive modification via Ce doping and Sn deposition was demonstrated to be a promising methodology to offer high mineralization and avoid moisture-aroused inactivation. Ce doping caused lattice distortion, increased Mn3+ content to 2.7 times that of the pristine MnO2 and weakened Mn-O bonds due to electron transfer from Ce3+ to lattice oxygen, thus facilizing oxygen vacancy formation. Further, Sn deposition on CeMn substrate induced strong metal support interaction (SMSI) due to the core-shell like structure of Sn@CeMn, which promoted the construction of active oxygen vacancies to an even larger extent (1.2 and 2.5 times that of the CeMn and pristine MnO2, respectively). The thus-formed larger amount of reactive oxygen species rendered the Sn@CeMn simultaneously with high CO2 yield and low CO production. Also benefited from the SMSI effect, the Sn@CeMn's ability to continuously activate O2 and H2O into reactive oxygen species (e.g.,·OH radicals) was enhanced, which could offset the negativity caused by water vapor, thereby keeping > 95% removal during 5.5 h water switch on/off investigation at 200 °C. Reaction pathways were uncovered with designed experimentations.

6.
Chemosphere ; 303(Pt 2): 134819, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595108

RESUMO

In this study, an aerosol-assisted Fe0/C (carbon supported zero-valent iron) composite was prepared and evaluated, which could effectively remove nitrate and exhibit high nitrogen selectivity. The results show that the selectivity of nitrogen for freshly prepared Fe0/C composites could reach 52.2% when pH at 7, compared to that of 7.7% for traditional nZVI. Meanwhile, the removal efficiency of nitrate was slightly increased from 63.5% to 69.9%. Furthermore, a variety of methods such as SEM, TEM, XRD, XPS, BET, FTIR and TGA were used to characterize the Fe0/C composites before and after reaction. Hence, the following key factors were determined for the effective conversion from nitrate to nitrogen: the surface of zero valent iron particle should be protected from oxidation and its genuine characteristics are well retained; the reaction should be controlled under an anaerobic condition; and the carbon as the carrier to support iron particles is very important; lower initial pH favors nitrogen generation. Various materials including aged Fe0/C composites, Fe0/SiO2 (SiO2 supported zero-valent iron) composites and nZVI particles in the deoxygenated and oxygenated systems were assessed for comparison.


Assuntos
Nitratos , Poluentes Químicos da Água , Aerossóis , Carbono , Ferro/química , Nitratos/química , Nitrogênio , Óxidos de Nitrogênio , Dióxido de Silício , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 830: 154818, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341871

RESUMO

Under the background of indoor air formaldehyde decontamination, a freestanding ultra-light assembly was fabricated via ice-templating approach starting from MnO2 nanoparticles and environmentally benign agar powder. The 3D composite of agar and MnO2 (AM-3D) was comparatively studied with powdered counterparts (including pure MnO2 and mixture of agar and MnO2) and the 3D-structured agar for formaldehyde oxidation, and their physicochemical properties were examined with XRD, ATR, SEM, XPS, isothermal N2 adsorption, ESR, Raman, CO-TPR and O2-TPD. For the single test of formaldehyde oxidation, the AM-3D catalyst exhibited 62.0%-67.0% removal percentage for ~400 mg/m3 formaldehyde, which did not demonstrate significant advantage over the control samples. However, thanks to the porous 3D agar scaffold with large spatial volume that could promote a rapid gas-phase formaldehyde concentration reduction, and the strong interaction between the dispersed MnO2 particles and agar substrate that could afford a large amount of reactive oxygen species to further oxidize the adsorbed formaldehyde, the AM-3D composite was a much better HCHO-to-CO2 converter and possessed much more advantageous stability for repeated cycles of formaldehyde oxidation: even after ten cycles, there was still 41.7% of formaldehyde removed. Furthermore, the viable sunlight irradiation could easily restore the activity of the used AM-3D catalyst back to the level approaching that of the fresh one. Finally, reaction pathways were put forward via the infrared spectroscopic and ion chromatographic investigations on the surface intermediates of the spent materials.


Assuntos
Compostos de Manganês , Óxidos , Ágar , Catálise , Formaldeído , Compostos de Manganês/química , Oxirredução , Óxidos/química , Oxigênio/química
8.
Mol Plant Pathol ; 22(9): 1109-1120, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34233072

RESUMO

Fungal pathogens secrete effector proteins that regulate host immunity and can suppress basal defence mechanisms against colonization in plants. Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and reduces plant yields. However, little is currently known about how the effectors secreted by V. dahliae function. In this study, we analysed and identified 34 candidate effectors in the V. dahliae secretome and found that Vd424Y, a glycoside hydrolase family 11 protein, was highly upregulated during the early stages of V. dahliae infection in cotton plants. This protein was located in the nucleus and its deletion compromised the virulence of the fungus. The transient expression of Vd424Y in Nicotiana benthamiana induced BAK1- and SOBIR1-dependent cell death and activated both salicylic acid and jasmonic acid signalling. This enhanced its resistance to the oomycetes Phytophthora capsici in a way that depended on its nuclear localization signal and signal peptides. Our results demonstrate that Vd424Y is an important effector protein targeting the host nucleus to regulate and activate effector-triggered immunity in plants.


Assuntos
Verticillium , Ascomicetos , Morte Celular , Gossypium/genética , Células Vegetais , Doenças das Plantas , Virulência
9.
Talanta ; 219: 121272, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887162

RESUMO

Estrogens distribute widely in the environment as endocrine-disrupting chemicals (EDCs), which have to be monitored to evaluate their environmental impact. Aim to improve the analytical throughput of liquid chromatography-high resolution mass spectrometry (LC-HRMS), a quadruplex stable isotope dansylation method was developed, with which three real samples could be quantitatively analyzed in one injection. As the estrogens were at trace level in complex matrices, magnetic solid-phase extraction (MSPE) was applied to enrich these analytes and remove the interfaces. By integrating MSPE and quadruplex stable isotope dansylation, a solid-phase quadruplex labeling method was developed for the LC-HRMS analysis of estrogen analogues. For the tested seven estrogens, the developed method showed low detection limits (0.1-0.5 ng/L for pond water and 0.01-0.05 µg/kg for poultry manure), good precision (RSD < 5.5%) and accuracy (96.8-108.3%). The method was applied in the determination of estrogens in environmental samples, and the results revealed that all the tested estrogens were present in the estuary water (unquantifiable to 71.2 ng/L) and chicken manure (undetectable to 25.43 µg/kg).


Assuntos
Estrogênios , Poluentes Químicos da Água , Cromatografia Líquida , Isótopos , Limite de Detecção , Extração em Fase Sólida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
10.
Chemosphere ; 257: 127225, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505036

RESUMO

The role of plastic as a vector for bioaccumulation of hydrophobic organic pollutants has been widely studied. However, the interactions between microplastics (MPs) and crude oil, and the transfer kinetics of sorbed oil from ingested MPs into aquatic biota are largely unknown. In this study, interactions between MPs and crude oil in seawater and digestive tract mimic of aquatic biota have been examined. To mimic the living, transportation and cooking conditions of aquatic organisms, sorption and desorption behaviors were investigated under room temperature-bath (25 °C), ice-bath (0∼4 °C) and boiling water-bath (95∼100 °C), and pH was set as 4 and 7 for the simulated gut fluid. The results showed that sorption capacity of polyethylene (PE) MPs for crude oil in seawater was higher than that in intestinal tract, indicating more oil residue in aqueous phase of gut fluid in the present of organic particles. The sorption kinetics models were well fitted to the pseudo-order model, and isotherms models were well fitted to the Freundlich model. In addition, the results demonstrated that temperature played a significant effect on crude oil viscosity, and the sorption capacity under different temperatures was in the order of 25 °C > 95∼100 °C > 0∼4 °C, indicating that more oil was remained in aqueous phase at boiling water-bath and ice-bath. The increment of pH enhances the sorption capacities of PE MPs. Moreover, the desorption experiment has supplemented the current findings from the sorption experiments.


Assuntos
Microplásticos/química , Petróleo , Polietileno/química , Poluentes Químicos da Água/química , Adsorção , Organismos Aquáticos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Plásticos/química , Água do Mar/química , Poluentes Químicos da Água/análise
11.
RSC Adv ; 10(12): 6801-6806, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493880

RESUMO

Multiple enzyme-like activities of manganese oxides (MnO2) have been reported and applied in catalysis, biosensors, and cancer therapy. Here, we report that catechol can be determined colorimetrically based on the 3,3',5,5'-tetramethylbenzidine (TMB) oxidase-like activity of δ-MnO2. The detection was based on pre-incubation of catechol containing water samples with δ-MnO2, and then the residual TMB oxidase-like activity of reacted δ-MnO2 was linearly dependent on the catechol concentration in the range of 0.5 to 10 µM. This determination method was stable at pH 3.73-6.00 and was not affected by ion strength up to 200 µM. Common co-solutes in water bodies (50 µM) have negligible effects and excellent selectivity of catechol among various phenolic compounds (15 µM) was facilitated. Both reduction and aggregation of δ-MnO2 were observed during the incubation process with catechol, and aggregation-induced TMB oxidase-mimic activity decrease was the main factor for this colorimetric determination.

12.
Plant Sci ; 286: 28-36, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300139

RESUMO

MYB family genes act as important regulators modulating the response to abiotic stress in plants. However, much less is known about MYB proteins in cotton. Here, we found that a cotton MYB gene, GhMYB73, was induced by NaCl and abscisic acid (ABA). Silencing GhMYB73 expression in cotton increased sensitivity to salt stress. The cotyledon greening rate of Arabidopsis thaliana over-expressing GhMYB73 under NaCl or mannitol treatment was significantly enhanced during the seedling germination stage. What's more, several osmotic stress-induced genes, such as AtNHX1, AtSOS3 and AtP5CS1, were more highly induced in the over-expression lines than in wild type under salt treatment, supporting the hypothesis that GhMYB73 contributes to salinity tolerance by improving osmotic stress resistance. Arabidopsis lines over-expressing GhMYB73 had superior germination and cotyledon greening under ABA treatment, and some abiotic stress-induced genes involved in ABA pathways (AtPYL8, AtABF3, AtRD29B and AtABI5), had increased transcription levels under salt-stress conditions in these lines. Furthermore, we found that GhMYB73 physically interacts with GhPYL8 and AtPYL8, suggesting that GhMYB73 regulates ABA signaling during salinity stress response. Taken together, over-expression of GhMYB73 significantly increases tolerance to salt and ABA stress, indicating that it can potentially be used in transgenic technology approaches to improve cotton salt tolerance.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Inativação Gênica , Genes myb , Gossypium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo
13.
Front Chem ; 7: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740394

RESUMO

Perchlorate removal was tested in the cathode chamber of microbial electrochemical systems (MESs). Dual-chambers MESs were constructed and operated in batch mode with four kinds of cathode materials including Fe/C particles (Fe/C), zero valent iron particles (ZVI), blank carbon felt (CF), and active carbon (AC). Without external energy supply or perchlorate-reducing microbial pre-enrichment, perchlorate ( ClO 4 - ) removal could be achieved in the cathode chambers of MESs at different efficiencies. The highest ClO 4 - removal rates in these reactors were 18.96 (Fe/C, 100 Ω, 2 days), 15.84 (ZVI, 100 Ω, 2 days), 14.37 (CF, 100 Ω, 3 days), and 19.78 mg/L/day (AC, 100 Ω, 2 days). ClO 4 - degradation products were mainly Cl- and ClO 3 - , and the total chlorine in the products was lower than the theoretical input. The non-conservation of the total chlorine may be caused by the adsorption and co-precipitation related to the electrode materials. Coulombs and coulombic efficiency calculation showed that electron provided by MESs was partially responsible for ClO 4 - reduction, for the Fe/C cathode reactors, about a quarter of electron was provided by MESs.

14.
Health Qual Life Outcomes ; 16(1): 165, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107802

RESUMO

BACKGROUND: To develop a Cancer Self-Perceived Discrimination Scale (CSPDS) for Chinese cancer patients and to assess its reliability and validity. METHOD: A total of 178 patients were recruited and the classical test theory was used to develop the CSPDS. Item analysis was adapted to improve the preliminary version of the CSPDS, then the reliability, the validity and the acceptability of the final version of CSPDS were assessed. RESULTS: This CSPDS contained 14 items classified into 3 subscales: social withdrawal with 7 items, stigma with 4 and self-deprecation with 3. Good validity (χ2/df = 1.216, GFI = 0.935, AGFI = 0.903, I-CVIs> 0.80) and good reliability (Cronbach's alpha = 0.829, Spearman-Brown coefficient = 0.827, test-retest reliability coefficient = 0.944) were found. The completion time was 6.06 ± 1.80 min. Participants who were female and reported poor self-rated health tended to have higher CSPDS scores (P <  0.05). CONCLUSIONS: The results indicated that this CSPDS could be used to assess the level of self-perceived discrimination and to preliminarily screen perceived discrimination among Chinese cancer patients, especially in Southwest China. It may provide a basis for scientific assessment of targeted patient education, psychological counseling, social interventions, and psychotherapy in the future.


Assuntos
Povo Asiático/psicologia , Neoplasias/psicologia , Qualidade de Vida/psicologia , Autoimagem , Estigma Social , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários , Adulto Jovem
15.
Biomed Res Int ; 2017: 4684962, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259982

RESUMO

Icariin is one of the predominant flavonoids contained in Herba Epimedii (Yin-yang-huo in Chinese), a well-known Chinese medicine for the treatment of cancers and immune system diseases. Although Herba Epimedii has been widely used in China and there are so many and various research reports on the herbal drug and its main flavones, very limited data is available on the tissue distribution and biotransformation of icariin. In the present study, a liquid chromatographic method combined with electrospray ionization tandem mass spectrometry was developed to quantify the concentration of icariin in rat plasma and various tissues collected at different time points after oral administration of the total flavonoid extract of Herba Epimedii at a dose of 0.69 g/kg (corresponding to 42 mg/g icariin). Biological samples were processed by simple protein precipitation. Genistein was chosen as internal standard. The method was successfully applied to plasma pharmacokinetic and tissue distribution studies of icariin in rat. As a result, it was worth noting that the tissue distribution characteristics of icariin exhibited a significant gender difference. Moreover, in vivo metabolism of icariin was also investigated. A total of 11 potential metabolites were found in rat feces collected in different time periods after oral and intramuscular administration of icariin. In vivo metabolic pathways were involved in hydrolysis, demethylation, oxidation, and conjugation. The preclinical data would be useful for fully understanding in vivo disposition of this compound and interpreting the mechanism of its biological response.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Animais , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Flavonoides/metabolismo , Flavonoides/farmacocinética , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Neoplasias/tratamento farmacológico , Ratos , Espectrometria de Massas em Tandem
16.
Neural Regen Res ; 8(20): 1881-91, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206497

RESUMO

Interleukin-18 gene promoter polymorphisms are potential risk factors for ischemic cerebrovascular disease, and the -607C allele may increase ischemic stroke risk in the Han Chinese population. In the present study, we recruited 291 patients with ischemic cerebrovascular disease from the Affiliated Hospital of Qingdao University Medical College, China, and 226 healthy controls. Both patients and controls were from the Han population in northern China. Immunoresonance scattering assays detected increased serum amyloid A protein, C-reactive protein, and interleukin-18 levels in ischemic cerebrovascular disease patients compared with healthy controls. Analysis of the -607C/A (rs1946518) polymorphism in the interleukin-18 gene promoter showed ischemic cerebrovascular disease patients exhibited increased frequencies of the CC genotype and C alleles than healthy controls. Genotype and allele frequencies of the interleukin-18 -137G/C (rs187238) polymorphism and the -13T/C (rs11024595) polymorphism in the 5'-flanking region of serum amyloid A, showed no significant difference between the two groups. Multivariate logistic regression analysis on the interleukin-18 promoter A/C genetic locus, for correction of age, gender, history of smoking, hypertension, diabetes mellitus, hypercholesteremia, and an ischemic stroke family history, showed ischemic cerebrovascular disease risk in individuals without the A allele (C homozygotes) was 2.2-fold greater than in A allele carriers. Overall, our findings suggest that the -13T/C (rs11024595) polymorphism in the 5'-flanking region of serum amyloid A has no correlation with ischemic cerebrovascular disease, but the C allele of the -607C/A (rs1946518) polymorphism in the interleukin-18 promoter is a high-risk factor for ischemic cerebrovascular disease in the Han population of northern China. In addition, the A allele is likely a protective gene for ischemic cerebrovascular disease.

17.
Neural Regen Res ; 7(7): 528-33, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25745440

RESUMO

The present study recruited 193 patients with ischemic cerebrovascular disease from Inpatient and Outpatient Departments at the Affiliated Hospital of Qingdao University Medical College, China from August 2008 to May 2010, as well as 120 healthy volunteers from the Medical Examination Center at the Affiliated Hospital of Qingdao University Medical College, China, who served as controls for this study. Patients and control subjects were from the Han population in northern China. Enzyme- linked immunosorbent assay analysis revealed increased levels of serum pregnancy-associated plasma protein-A (PAPP-A) in ischemic cerebrovascular disease patients compared with healthy controls. In addition, the patients exhibited greater frequency of genotype CC and C alleles in a missense A/C (Tyr/Ser) polymorphism (dbSNP: rs7020782) of exon 14 in the PAPP-A gene. Multiple-factor logistic regression analysis on correction of age, gender, history of smoking, hypertension, diabetes mellitus, hypercholesteremia, and ischemic stroke family history showed that the risk for ischemic cerebrovascular disease in the population without the A allele at the A/C genetic locus in exon 14 of the PAPP-A was 2-folds greater than the population expressing the A allele. These experimental findings suggested that ischemic cerebrovascular disease correlated with the C allele in exon 14 of PAPP-A. In addition, the A allele is likely a protective gene; individuals carrying the A allele were less prone to ischemic cerebrovascular disease compared with individuals without the A allele.

18.
Environ Sci Technol ; 45(5): 1949-54, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21299241

RESUMO

Spherical iron-carbon nanocomposites were developed through a facile aerosol-based process with sucrose and iron chloride as starting materials. These composites exhibit multiple functionalities relevant to the in situ remediation of chlorinated hydrocarbons such as trichloroethylene (TCE). The distribution and immobilization of iron nanoparticles on the surface of carbon spheres prevents zerovalent nanoiron aggregation with maintenance of reactivity. The aerosol-based carbon microspheres allow adsorption of TCE, thus removing dissolved TCE rapidly and facilitating reaction by increasing the local concentration of TCE in the vicinity of iron nanoparticles. The strongly adsorptive property of the composites may also prevent release of any toxic chlorinated intermediate products. The composite particles are in the optimal range for transport through groundwater saturated sediments. Furthermore, those iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.


Assuntos
Carbono/química , Recuperação e Remediação Ambiental/métodos , Ferro/química , Nanocompostos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Adsorção , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura
19.
Environ Sci Technol ; 42(12): 4494-9, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605576

RESUMO

Spherical silica particles containing nanoscale zerovalent iron were synthesized through an aerosol-assisted process. These particles are effective for groundwater remediation, with the environmentally benign silica particles serving as effective carriers for nanoiron transport. Incorporation of iron into porous sub-micrometer silica particles protects ferromagnetic iron nanoparticles from aggregation and may increase their subsurface mobility. Additionally, the presence of surface silanol groups on silica particles allows control of surface properties via silanol modification using organic functional groups. Aerosolized silica particles with functional alkyl moieties, such as ethyl groups on the surface, clearly adsorb solubilized trichloroethylene (TCE) in water. These materials may therefore act as adsorbents which have coupled reactivity characteristics. The nanoscale iron/silica composite particles with controlled surface properties have the potential to be efficiently applied for in situ source depletion and in the design of permeable reactive barriers.


Assuntos
Recuperação e Remediação Ambiental/métodos , Ferro/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Nanotecnologia , Tamanho da Partícula
20.
Environ Sci Technol ; 42(23): 8871-6, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19192811

RESUMO

Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through soil. In this paper we report the transport characteristics of nanoscale zerovalent iron entrapped in porous silica particles and prepared through an aerosol-assisted process. The entrapment of iron nanoparticles into the silica matrix prevents their aggregation while maintaining the particles' reactivity. Furthermore, the silica particles are functionalized with alkyl groups and are extremely efficient in adsorbing dissolved trichloroethylene (TCE). Because of synthesis through the aerosol route, the particles are of the optimal size range (0.1-1 microm) for mobility through sediments. Column and capillary transport experiments confirm that the particles move far more effectivelythrough model soils than commercially available uncoated nanoscale reactive iron particles. Microcapillary experiments indicate that the particles partition to the interface of TCE droplets, further enhancing their potential for dense non-aqueous-phase liquid source-zone remediation.


Assuntos
Recuperação e Remediação Ambiental , Ferro/química , Movimento (Física) , Nanocompostos/química , Dióxido de Silício/química , Tricloroetileno/isolamento & purificação , Adsorção , Aerossóis/química , Filtração , Nanocompostos/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA