Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 312: 120825, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059552

RESUMO

Perishability caused by natural plant hormone ethylene has attracted great attention in the field of fruit and vegetable (F&V) preservation. Various physical and chemical methods have been applied to remove ethylene, but the eco-unfriendliness and toxicity of these methods limit their application. Herein, a novel starch-based ethylene scavenger was developed by introducing TiO2 nanoparticles into starch cryogel and applying ultrasonic treatment to further improve ethylene removal efficiency. As a porous carrier, the pore wall of cryogel provided dispersion space, which increased the area of TiO2 exposed to UV light, thereby endowing starch cryogel with ethylene removal capacity. The photocatalytic performance of scavenger reached the maximum ethylene degradation efficiency of 89.60 % when the TiO2 loading was 3 %. Ultrasonic treatment interrupted starch molecular chains and then promoted their rearrangement, increasing the material specific surface area from 54.6 m2/g to 225.15 m2/g and improving the ethylene degradation efficiency by 63.23 % compared with the non-sonicated cryogel. Furthermore, the scavenger exhibits good practicability for removing ethylene as a banana package. This work provides a new carbohydrate-based ethylene scavenger, utilizing as a non-food contact inner filler of F&V packaging in practical applications, which exhibits great potential in F&V preservation and broadens the application fields of starch.


Assuntos
Musa , Nanocompostos , Amido/química , Musa/química , Criogéis , Embalagem de Alimentos , Etilenos , Nanocompostos/química
2.
J Hazard Mater ; 430: 128448, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152107

RESUMO

Smart superhydrophobic sorbents are in high demand for cleaning oil spills that could endanger the aquatic ecosystem. Herein, we demonstrated the fabrication of a superhydrophobic and magnetic modular cryogel (SNS@Fe-PSC) containing three starch-based modules, namely, a superhydrophobic nano-coating, a magnetic nanocomposite insertion, and a high-strength starch/polyvinyl alcohol composite substrate. The surface chemical composition and hierarchical micro/nanostructures of this material were investigated in detail. The modular cryogel had a high water contact angle (>151°) and low sliding angle (<9°), as well as excellent water-repellent, self-cleaning, and anti-fouling properties. This material also exhibited good durability owing to its stable chemical bonding and structural support. SNS@Fe-PSC could be applied to remove oil from water effectively. Moreover, the magnetic module (saturation magnetization, 5.04 emu/g) allowed the as-obtained material to be propelled and controlled by a magnet on the surface of water. Variable magnetic-actuated motion direction could be realized by adjusting the position and amount of magnetic modules inserted to the cryogel.


Assuntos
Poluição por Petróleo , Criogéis , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos
3.
Am J Cancer Res ; 5(10): 2929-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26693050

RESUMO

Breast cancer is composed of multiple subtypes with distinct morphologies and clinical implications. The advent of microarrays has led to a new paradigm in deciphering breast cancer heterogeneity, based on which the intrinsic subtyping system using prognostic multigene classifiers was developed. Subtypes identified using different gene panels, though overlap to a great extent, do not completely converge, and the avail of new information and perspectives has led to the emergence of novel subtypes, which complicate our understanding towards breast tumor heterogeneity. This review explores and summarizes the existing intrinsic subtypes, patient clinical features and management, commercial signature panels, as well as various information used for tumor classification. Two trends are pointed out in the end on breast cancer subtyping, i.e., either diverging to more refined groups or converging to the major subtypes. This review improves our understandings towards breast cancer intrinsic classification, current status on clinical application, and future trends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA