Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Clin Exp Med ; 24(1): 154, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972952

RESUMO

Essential thrombocythemia (ET) and prefibrotic primary myelofibrosis (pre-PMF) are Philadelphia chromosome-negative myeloproliferative neoplasms. These conditions share overlapping clinical presentations; however, their prognoses differ significantly. Current morphological diagnostic methods lack reliability in subtype differentiation, underlining the need for improved diagnostics. The aim of this study was to investigate the multi-omics alterations in bone marrow biopsies of patients with ET and pre-PMF to improve our understanding of the nuanced diagnostic characteristics of both diseases. We performed proteomic analysis with 4D direct data-independent acquisition and microbiome analysis with 2bRAD-M sequencing technology to identify differential protein and microbe levels between untreated patients with ET and pre-PMF. Laboratory and multi-omics differences were observed between ET and pre-PMF, encompassing diverse pathways, such as lipid metabolism and immune response. The pre-PMF group showed an increased neutrophil-to-lymphocyte ratio and decreased high-density lipoprotein and cholesterol levels. Protein analysis revealed significantly higher CXCR2, CXCR4, and MX1 levels in pre-PMF, while APOC3, APOA4, FABP4, C5, and CFB levels were elevated in ET, with diagnostic accuracy indicated by AUC values ranging from 0.786 to 0.881. Microbiome assessment identified increased levels of Mycobacterium, Xanthobacter, and L1I39 in pre-PMF, whereas Sphingomonas, Brevibacillus, and Pseudomonas_E were significantly decreased, with AUCs for these genera ranging from 0.833 to 0.929. Our study provides preliminary insights into the proteomic and microbiome variations in the bone marrow of patients with ET and pre-PMF, identifying specific proteins and bacterial genera that warrant further investigation as potential diagnostic indicators. These observations contribute to our evolving understanding of the multi-omics variations and possible mechanisms underlying ET and pre-PMF.


Assuntos
Medula Óssea , Mielofibrose Primária , Proteômica , Trombocitemia Essencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biópsia , Medula Óssea/patologia , Medula Óssea/microbiologia , Diagnóstico Diferencial , Microbiota , Multiômica , Mielofibrose Primária/patologia , Trombocitemia Essencial/patologia , Trombocitemia Essencial/diagnóstico , Trombocitemia Essencial/genética
2.
Cell Commun Signal ; 22(1): 340, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907234

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is recognized as the most aggressive and immunologically infiltrated subtype of breast cancer. A high circulating neutrophil-to-lymphocyte ratio (NLR) is strongly linked to a poor prognosis among patients with breast cancer, emphasizing the critical role of neutrophils. Although the involvement of neutrophils in tumor metastasis is well documented, their interactions with primary tumors and tumor cells are not yet fully understood. METHODS: Clinical data were analyzed to investigate the role of neutrophils in breast cancer. In vivo mouse model and in vitro co-culture system were used for mechanism researches. Blocking experiments were further performed to identify therapeutic agents against TNBC. RESULTS: TNBC cells secreted GM-CSF to sustain the survival of mature neutrophils and upregulated CD11b expression. Through CD11b, neutrophils specifically binded to ICAM1 on TNBC cells, facilitating adhesion. Transcriptomic sequencing combined with human and murine functional experiments revealed that neutrophils, through direct CD11b-ICAM1 interactions, activated the MAPK signaling pathway in TNBC cells, thereby enhancing tumor cell invasion and migration. Atorvastatin effectively inhibited ICAM1 expression in tumor cells, and tumor cells with ICAM1 knockout or treated with atorvastatin were unresponsive to neutrophil activation. The MAPK pathway and MMP9 expression were significantly inhibited in the tumor tissues of TNBC patients treated with atorvastatin. CONCLUSIONS: Targeting CD11b-ICAM1 with atorvastatin represented a potential clinical approach to reduce the malignant characteristics of TNBC.


Assuntos
Antígeno CD11b , Adesão Celular , Molécula 1 de Adesão Intercelular , Neutrófilos , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neutrófilos/metabolismo , Humanos , Animais , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Feminino , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Movimento Celular
3.
Nano Lett ; 24(27): 8361-8368, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940365

RESUMO

Cell migration requires the interplay among diverse migration patterns. The molecular basis of distinct migration programs is undoubtedly vital but not fully explored. Meanwhile, the lack of tools for investigating spontaneous migratory plasticity in a single living cell also adds to the hindrance. Here, we developed a micro/nanotechnology-enabled single-cell analytical platform to achieve coherent monitoring of spontaneous migratory pattern and signaling molecules. Via the platform, we unveiled a previously unappreciated STAT3 regionalization on the multifunctional regulations of migration. Specifically, nuclear STAT3 is associated with amoeboid migration, while cytoplasmic STAT3 promotes mesenchymal movement. Opposing effects of JAK2 multisite phosphorylation shape its response to STAT3 distribution in a dynamic and antagonistic manner, eventually triggering a reversible amoeboid-mesenchymal transition. Based on the above results, bioinformatics further revealed a possible downstream regulator of nucleocytoplasmic STAT3. Thus, our platform, as an exciting technological advance in single-cell migration research, can provide in-depth mechanism interpretations of tumor metastasis and progression.


Assuntos
Movimento Celular , Núcleo Celular , Janus Quinase 2 , Fator de Transcrição STAT3 , Análise de Célula Única , Fator de Transcrição STAT3/metabolismo , Humanos , Núcleo Celular/metabolismo , Janus Quinase 2/metabolismo , Fosforilação , Transdução de Sinais , Citoplasma/metabolismo , Animais
4.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870327

RESUMO

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Assuntos
Dimetilpolisiloxanos , Microesferas , Níquel , Fuligem , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Fuligem/química , Movimento , Condutividade Elétrica
5.
Cancer Control ; 31: 10732748241255212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769789

RESUMO

OBJECTIVE: A high number of Non-Small Cell Lung Cancer (NSCLC) patients with brain metastasis who have not had surgery often have a negative outlook. Radiotherapy remains a most common and effective method. Nomograms were developed to forecast the cancer-specific survival (CSS) and overall survival (OS) in NSCLC individuals with nonoperative brain metastases who underwent radiotherapy. METHODS: Information was gathered from the Surveillance, Epidemiology, and End Results (SEER) database about patients diagnosed with NSCLC who had brain metastases not suitable for surgery. Nomograms were created and tested using multivariate Cox regression models to forecast CSS and OS at intervals of 1, 2, and 3 years. RESULTS: The research involved 3413 individuals diagnosed with NSCLC brain metastases who had undergone radiotherapy but had not experienced surgery. These participants were randomly divided into two categories. The analysis revealed that gender, age, ethnicity, marital status, tumor location, tumor laterality, tumor grade, histology, T stage, N stage, chemotherapy, tumor size, lung metastasis, bone metastasis, and liver metastasis were significant independent predictors for OS and CSS. The C-index for the training set for predicting OS was .709 (95% CI, .697-.721), and for the validation set, it was .705 (95% CI, .686-.723), respectively. The C-index for predicting CSS was .710 (95% CI, .697-.722) in the training set and .703 (95% CI, .684-.722) in the validation set, respectively. The nomograms model, as suggested by the impressive C-index, exhibits outstanding differentiation ability. Moreover, the ROC and calibration curves reveal its commendable precision and distinguishing potential. CONCLUSIONS: For the first time, highly accurate and reliable nomograms were developed to predict OS and CSS in NSCLC patients with non-surgical brain metastases, who have undergone radiotherapy treatment. The nomograms may assist in tailoring counseling strategies and choosing the most effective treatment method.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nomogramas , Programa de SEER , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Masculino , Feminino , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidade , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Idoso , Prognóstico , Adulto
6.
Int Immunopharmacol ; 130: 111705, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38412673

RESUMO

OBJECTIVE: To evaluate the therapeutic advantage of G-CSF to whole brain radiotherapy (WBRT) in combination with immunotherapy as a first-line treatment for non-small cell lung cancer (NSCLC) brain metastases (BMs). METHODS: In this retrospective study, 117 patients (37 in G-CSF group and 80 in no G-CSF group) who underwent first-line WBRT combined with immunotherapy were enrolled. Their survival, intracranial response, BM-related symptoms and toxicity were evaluated. RESULTS: The overall survival (OS) of patients in G-CSF group was significantly improved compared to patients no G-CSF group (median time: 14.8 vs 10.2 months; HR: 0.61, 95 % CI: 0.38-0.97, p = 0.035). However, there were no significant differences in intracranial responses between the two groups (p > 0.05). The G-CSF group exhibited a significantly higher rate of relief from BM-related symptoms compared to the no G-CSF group (91.7 % vs 59.5 %, p = 0.037). Cox proportional hazards regression analyses indicated that after-treatment ALC > 0.9 × 10^9/L (HR 0.57, 95 % CI 0.32-0.99, p = 0.046) and Hb > 110 g/dL (HR 0.41, 95 % CI 0.24-0.71, p = 0.001) were significant potential factors associated with extended OS. The addition of G-CSF was well tolerated and effectively reduced the incidence of neutropenia (0 % vs 5.0 %, p = 0.17). CONCLUSION: Integrating G-CSF with WBRT and immunotherapy as a first-line treatment for NSCLC-BMs has exhibited significant efficacy and favorable tolerability.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Fator Estimulador de Colônias de Granulócitos , Resultado do Tratamento , Irradiação Craniana , Prognóstico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Imunoterapia
7.
BMC Anesthesiol ; 24(1): 81, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413909

RESUMO

BACKGROUND: This study was identified the risk factors for and designed to investigate influence of postoperative moderate-to-severe pain of post anaesthesia care unit (PACU) in patients with malignancy. METHODS: A retrospective study was performed on 22,600 cancer patients with malignancy who underwent elective radical surgery in the new hospital of First Affiliated Hospital of Wenzhou Medical University, between January 2016 and June 2021. All patients were transferred to the PACU after tracheal extubation. Patients were divided into two groups according to a visual analogue scale (VAS) score of > 3: the no-moderate-severe-pain group and moderate-to-severe-pain group. Data pertaining to demographic, surgical, anaesthetic, and other factors were recorded. Lasso and logistic regression analysis was performed to explore the risk factors, then a nomogram was constructed to predict the moderate-severe-pain in the PACU. Validation was performed by using another 662 cancer patients in old hospital. The ROC curves and calibration curve were used to evaluate the accuracy and predictive ability of the nomogram. RESULTS: The incidence of postoperative moderate-to-severe pain of PACU in patients with malignancy was 1.42%. Gender, type of surgery, postoperative use of PCA, intraoperative adjuvant opioid agonists, NSAIDS, epidural analgesia, duration of anaesthesia, intraoperative massive haemorrhage, PACU vomiting were independent predictors for postoperative moderate-to-severe pain of PACU in the patients with malignancy. The area under the ROC curve of the predictive models in the primary and validation groups were 0.817 and 0.786, respectively. Moderate-to-severe pain in the PACU correlated with hypertension, hyperglycaemia, agitation, and hypoxemia (P < 0.05). CONCLUSIONS: The prediction model for postoperative moderate-to-severe pain of PACU in patients with malignancy has good predictive ability and high accuracy, which is helpful for PACU medical staff to identify and prevent postoperative moderate-to-severe pain in advance. TRIAL REGISTRATION: The study was approved by the Clinical Research Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University (No.KY2021-097) and registered in the Chictr.org.cn registration system on 06/12/2021 (ChiCTR2100054013).


Assuntos
Analgesia Epidural , Anestesia , Neoplasias , Humanos , Estudos Retrospectivos , Dor Pós-Operatória/epidemiologia , Dor Pós-Operatória/prevenção & controle , Neoplasias/complicações , Neoplasias/cirurgia
8.
Cancer Cell Int ; 24(1): 32, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229092

RESUMO

BACKGROUND: Bladder cancer is the second most common genitourinary malignancy worldwide. The death rate of bladder cancer has increased every year. However, the molecular mechanism of bladder cancer is not sufficiently studied. Deubiquitinating enzymes (DUBs) play an important role in carcinogenesis. Several studies have demonstrated that USP5 associated with malignancy and pathological progression in hepatocellular carcinoma, colorectal and non-small cell lung cancer. However, the role of USP5 in bladder cancer need to be explored. METHODS: The USP5 expression was analysed using the web server GEPIA. To explore USP5 function in bladder cancer, we constructed USP5-knockout cell lines in T24 cells. A FLAG-USP5 (WT USP5) plasmid and a plasmid FLAG-USP5 C335A (catalytic-inactive mutant) used to overexpress USP5 in EJ cells. CCK8, colony formation, transwell and scratch assays were used to assess cell viability, proliferation and migration. RNA sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Coimmunoprecipitation and immunofluorescence were used to explore the interaction between USP5 and c-Jun. Cycloheximide (CHX) chase assays were performed to establish the effect of USP5 on c-Jun stability. Xenograft mouse model was used to study the role of USP5 in bladder cancer. RESULTS: USP5 expression is increased in bladder cancer patients. Genetic ablation of USP5 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. RNA-seq and luciferase pathway screening showed that USP5 activated JNK signalling, and we identified the interaction between USP5 and c-Jun. USP5 was found to activate c-Jun by inhibiting its ubiquitination. CONCLUSIONS: Our results show that high USP5 expression promotes bladder cancer progression by stabilizing c-Jun and that USP5 is a potential therapeutic target in bladder cancer.

9.
Am J Transl Res ; 15(11): 6626-6631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074820

RESUMO

De novo glomerular injuries or relapse of nephropathy following COVID-19 vaccine has been reported. Here we present the first case of successful treatment of new-onset diabetes mellitus and biopsy-proven IgA nephropathy after COVID-19 vaccination. A 56-year-old man with no known medical history of renal dysfunction or diabetes mellitus developed both within 3 months after receiving a third dose of inactivated COVID-19 vaccine (Vero cells). His symptoms were characterized by brown urine, severe dry mouth, and excessive thirst. Randomly acquired blood glucose levels exceeded 33.3 mmol/L. A kidney biopsy showed IgA nephropathy. He was started on insulin for glycemic control. After glucocorticoid and cyclophosphamide treatment, oral tablets of repaglinide, combined with acarbose, controlled blood glucose and stabilized kidney function. This case is unique because the kidneys and pancreas were simultaneously affected by the vaccine. Successful treatment of the disease proved that cyclophosphamide combined with glucocorticoids were effective and that blood glucose was successfully controlled. This treatment option could be useful in similar cases in the future.

10.
J Neuroinflammation ; 20(1): 284, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037161

RESUMO

BACKGROUND: Neuroinflammation mediated by microglial pyroptosis is an important pathogenic mechanism of septic encephalopathy (SAE). It has been reported that TRIM45 is associated with tumours and inflammatory diseases. However, the role of TRIM45 in SAE and the relationship between TRIM45 and microglial pyroptosis are unknown. In this study, we found that TRIM45 played an important role in regulating microglial pyroptosis and the molecular mechanism. METHODS: SAE was induced by intraperitoneal injection of LPS in WT and AAV-shTRIM45 mice. BV2 cells were treated with LPS/ATP in vitro. Cognitive function was assessed by the Morris water maze. Nissl staining was used to evaluate histological and structural lesions. ELISA was used to dectect neuroinflammation. qPCR was used to detect the mRNA levels of inflammatory cytokines, NLRP3, and autophagy genes. Western blotting and immunofluorescence analysis were used to analyse the expression of the proteins. Changes in reactive oxygen species (ROS) in cells were observed by flow cytometry. Changes in mitochondrial membrane potential in BV2 cells were detected by JC-1 staining. Peripheral blood mononuclear cells were extracted from blood by density gradient centrifugation and then used for qPCR, western blotting and flow detection. To further explore the mechanism, we used the overexpression plasmids TRIM45 and Atg5 as well as siRNA-TRIM45 and siRNA-Atg5 to analyse the downstream pathway of NLRP3. The protein and mRNA levels of TRIM45 in peripheral blood mononuclear cells from sepsis patients were examined. RESULTS: Knocking down TRIM45 protected against neuronal damage and cognitive impairment in septic mice. TRIM45 knockdown inhibited microglial pyroptosis and the secretion of inflammatory cytokines in vivo and in vitro, which was mediated by NLRP3/Gsdmd-N activation. Overexpression of TRIM45 could activate NLRP3 and downstream proteins. Further examination showed that TRIM45 regulated the activation of NLRP3 by altering Atg5 and regulating autophagic flux. It was also found that overexpression and knockdown of TRIM45 affected the changes in ROS and mitochondrial membrane potential. Thus, knocking down TRIM45 could reduce microglial pyroptosis, the secretion of proinflammatory cytokines, and neuronal damage and improve cognitive function. In addition, the level of TRIM45 protein in septic patients was increased. There was a positive linear correlation between APACHE II score and TRIM45, between SOFA score and TRIM45. Compared to group GCS > 9, level of TRIM45 were increased in group GCS ≤ 8. CONCLUSION: TRIM45 plays a key role in neuroinflammation caused by LPS, and the mechanism may involve TRIM45-mediated exacerbation of microglial pyroptosis via the Atg5/NLRP3 axis.


Assuntos
Piroptose , Encefalopatia Associada a Sepse , Animais , Humanos , Camundongos , Citocinas/genética , Inflamassomos , Leucócitos Mononucleares , Lipopolissacarídeos , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio , Proteínas Repressoras , RNA Mensageiro , RNA Interferente Pequeno
11.
Quant Imaging Med Surg ; 13(12): 8190-8203, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106311

RESUMO

Background: Survival prediction is crucial for patients with gastric neuroendocrine neoplasms (gNENs) to assess the treatment programs and may guide personalized medicine. This study aimed to develop and evaluate a deep learning (DL) radiomics model to predict the overall survival (OS) in patients with gNENs. Methods: The retrospective analysis included 162 consecutive patients with gNENs from two hospitals, who were divided into a training cohort, internal validation cohort (The First Affiliated Hospital of Zhengzhou University; n=108), and an external validation cohort (The Henan Cancer Hospital; n=54). DL radiomics analysis was applied to computed tomography (CT) images of the arterial phase and venous phase, respectively. Based on pretreatment CT images, two DL radiomics signatures were developed to predict OS. The combined model incorporating the radiomics signatures and clinical factors was built through the multivariable Cox proportional hazards (CPH) method. The combined model was visualized into a radiomics nomogram for individualized OS estimation. Prediction performance was assessed with the concordance index (C-index) and the Kaplan-Meier (KM) estimator. Results: The DL-based radiomics signatures based on two phases were significantly correlated with OS in the training (C-index: 0.79-0.92; P<0.01), internal validation (C-index: 0.61-0.86; P<0.01), and external validation (C-index: 0.56-0.75; P<0.01) cohorts. The combined model integrating radiomics signatures with clinical factors showed a significant improvement in predictive performance compared to the clinical model in the training (C-index: 0.86 vs. 0.80; P<0.01), internal validation (C-index: 0.77 vs. 0.71; P<0.01), and external validation (C-index: 0.71 vs. 0.66; P<0.01) cohorts. Moreover, the combined model classified patients into high-risk and low-risk groups, and the high-risk group had a shorter OS compared to the low-risk group in the training cohort [hazard ratio (HR) 3.12, 95% confidence interval (CI): 2.34-3.93; P<0.01], which was validated in the internal (HR 2.51, 95% CI: 1.57-3.99; P<0.01) and external validation cohort (HR 1.77, 95% CI: 1.21-2.59; P<0.01). Conclusions: DL radiomics analysis could serve as a potential and noninvasive tool for prognostic prediction and risk stratification in patients with gNENs.

12.
Int J Nanomedicine ; 18: 6233-6256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936951

RESUMO

Radiotherapy is a pivotal method for treating malignant tumors, and enhancing the therapeutic gain ratio of radiotherapy through physical techniques is the direction of modern precision radiotherapy. Due to the inherent physical properties of high-energy radiation, enhancing the therapeutic gain ratio of radiotherapy through radiophysical techniques inevitably encounters challenges. The combination of hyperthermia and radiotherapy can enhance the radiosensitivity of tumor cells, reduce their radioresistance, and holds significant clinical utility in radiotherapy. Multifunctional nanomaterials with excellent biocompatibility and safety have garnered widespread attention in tumor hyperthermia research, demonstrating promising potential. Utilizing nanotechnology as a sensitizing carrier in conjunction with radiotherapy, and high atomic number nanomaterials can also serve independently as radiosensitizing carriers. This synergy between tumor hyperthermia and radiotherapy may overcome many challenges currently limiting tumor radiotherapy, offering new opportunities for its further advancement. In recent years, the continuous progress in the synthesis and design of novel nanomaterials will propel the future development of medical imaging and cancer treatment. This article summarizes the radiosensitizing mechanisms and effects based on gold nanotechnology and provides an overview of the advancements of other nanoparticles (such as bismuth-based nanomaterials, magnetic nanomaterials, selenium nanomaterials, etc.) in the process of radiation therapy.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias , Humanos , Ouro , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/uso terapêutico , Nanotecnologia/métodos , Tolerância a Radiação , Neoplasias/radioterapia
13.
Phytomedicine ; 121: 155125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820466

RESUMO

BACKGROUND: Kaempferol is a flavonoid derived from the herb, Kaempferia galanga L., in addition to exhibiting a wide range of pharmacological properties, kaempferol is also an anti-inflammatory, anti-lipid metabolizing, and anti-oxidative stress agent. The underlying molecular mechanisms of its effects on vascular endothelial growth factor (VEGF) secretion and activation of hepatic stellate cells (HSCs) are yet unknown. Activated HSCs induces VEGF release and extracellular matrix (ECM) accumulation which are important factors in hepatic fibrosis. PURPOSE: Our aim is to explore how kaempferol may affect hepatic fibrosis and the mechanisms behind its effects. METHODS: The in vivo model was Sprague-Dawley rats induced with carbon tetrachloride (CCl4). Histological staining was used to observe histological features of the liver. The levels of (alanine aminotransferase) ALT and (aspartate aminotransferase) AST were detected by the corresponding kits. Platelet-derived growth factor (PDGF) was used to stimulate the HSC-T6 rat hepatic stellate cells. The mechanisms underlying this process were investigated using a variety of molecular approaches, including immunofluorescence, RT-qPCR, and western blotting. Moreover, intracellular Ca2+ were observed by laser confocal microscope. RESULTS: It was found that kaempferol significantly reduced the expression of ASIC1a, VEGF, α-SMA and Collagen-I proteins in a model of CCl4-induced hepatic fibrosis in rats. In HSC-T6, kaempferol inhibits activation of HSCs by decreasing expression of ASIC1a, eIF2α, p-eIF2α and ATF-4. Laser confocal fluorescence showed that kaempferol inhibited Ca2+ influx and reduced Ca2+ concentration around the endoplasmic reticulum. Molecular docking and cellular thermal shift assay (CETSA) results further indicated that kaempferol interacted with ASIC1a. We found that kaempferol may promote the degradation of ASIC1a and inhibited ASIC1a- mediated upregulation of ERS. CONCLUSION: The data from our in vivo experiments demonstrate that kaempferol effectively attenuates hepatic fibrosis. In vitro studies we further propose a novel mechanism of kaempferol against hepatic fibrosis which can interact with ASIC1a and promote ASIC1a degradation while inhibiting the activation and VEGF release of HSCs by suppressing the ASIC1a-eIF2α-ATF-4 signaling pathway.


Assuntos
Tetracloreto de Carbono , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Tetracloreto de Carbono/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quempferóis/farmacologia , Quempferóis/metabolismo , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Células Estreladas do Fígado
14.
Cell Chem Biol ; 30(11): 1343-1353.e5, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37673067

RESUMO

CD97 (ADGRE5) is an adhesion G protein-coupled receptor (aGPCR) which plays crucial roles in immune system and cancer. However, the mechanism of CD97 activation and the determinant of G13 coupling selectivity remain unknown. Here, we present the cryo-electron microscopy structures of human CD97 in complex with G13, Gq, and Gs. Our structures reveal the stalk peptide recognition mode of CD97, adding missing information of the current tethered-peptide activation model of aGPCRs. For instance, a revised "FXφφφ" motif and a framework of conserved aromatic residues in the ligand-binding pocket. Importantly, structural comparisons of G13, Gq, and Gs engagements of CD97 reveal key determinants of G13 coupling selectivity, where a deep insertion of the α helix 5 and a closer contact with the transmembrane helix 6, 5, and 3 dictate coupling preferences. Taken together, our structural study of CD97 provides a framework for understanding CD97 signaling and the G13 coupling selectivity.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Humanos , Microscopia Crioeletrônica , Peptídeos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
15.
Front Biosci (Landmark Ed) ; 28(8): 182, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664922

RESUMO

As a spherical protein that acts as a repository for intracellular iron, Ferritin is the most important iron storage form and is known to influence tumor immunity. Unbound ferritin is composed of 24 subunits, made up of ferritin light chain (FTL) and ferritin heavy chain (FTH). Ferritin can be automatically put together to form hollow nanocages that measure 12 nm around the outside and 8 nm around the inside. Cancer causes the second-most deaths worldwide, effective elimination of tumor cells while protecting normal cells is the foundation of modern tumor therapy. To this end, the innate tumor-targeting activity of human FTH1, first identified ten years ago, is highly appealing. Unmodified human FTH1 binds to its receptor, transferrin receptor 1 (TfR1), which is frequently overexpressed in cancer cells. FTH1-TfR1 binding permits improved drug efficacy by promoting ferritin-mediated targeted delivery. In addition, FTH is also associated with the prognosis of multiple typies of cancer. The level of FTH1 is significantly and positively correlated with the infiltration of tumor-associated macrophages. FTH1 also plays an important role in regulating the tumor immunity of solid cancer. As such, FTH1 has been extensively applied in the targeted delivery of anticancer drugs, diagnostic molecules (e.g., radioisotopes and fluorophones), and inorganic nanoparticles (NPs) to tumors.This article reviews the role of FTH in cancer and its potential as a therapeutic target.


Assuntos
Nanopartículas , Neoplasias , Humanos , Ferritinas , Neoplasias/tratamento farmacológico , Ferro
16.
Proc Natl Acad Sci U S A ; 120(32): e2219905120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527341

RESUMO

Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), an adenosine triphosphate (ATP)-binding cassette (ABC) transporter on the digestive vacuole (DV) membrane of the parasite, is associated with the resistance to antimalarial drugs. To understand the mechanisms of PfMDR1, we determined the cryo-electron microscopy structures of this transporter in different states. The transporter in the apo state shows an inward-facing conformation with a large cavity opening to the cytoplasm. Upon ATP binding and dimerization of the nucleotide-binding domains (NBDs), PfMDR1 displays an outward-facing conformation with a cavity toward the DV lumen. Drug resistance-associated mutations were investigated in both structures for their effects, and Y184F was identified as an allosteric activity-enhancing mutation. The amphiphilic substrate-binding site of PfMDR1 was revealed by the complex structure with the antimalarial drug mefloquine and confirmed by mutagenesis studies. Remarkably, a helical structure was found to hinder NBD dimerization and inhibit PfMDR1 activity. The location of this regulatory domain in the N terminus is different from the well-studied R domain in the internal linker region of other ABC transporter family members. The lack of the phosphorylation site of this domain also suggests a different regulation mechanism.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Microscopia Crioeletrônica , Antimaláricos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia
17.
Front Immunol ; 14: 1236063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600774

RESUMO

Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.


Assuntos
Proteínas Ferro-Enxofre , Oligoelementos , Humanos , Cobre , Apoptose , Morte Celular , Ferro
18.
Redox Biol ; 66: 102845, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597423

RESUMO

While it is well established that the KEAP1-NRF2 pathway regulates the main inducible cellular response to oxidative stress, this cytoprotective function of NRF2 could become deleterious to the host if it confers survival onto irreparably damaged cells. In this regard, we have found that in diseased states, NRF2 promotes the transcriptional activation of a specific subset of the senescence-associated secretory phenotype (SASP) gene program, which we have named the NRF2-induced secretory phenotype (NISP). In two models of hepatic disease using Pten::Keap1 and Keap1::Atg7 double knockout mice, we found that the NISP functions in the liver to recruit CCR2 expressing monocytes, which function as immune system effector cells to directly remove the damaged cells. Through activation of this immune surveillance pathway, in non-transformed cells, NRF2 functions as a tumour suppressor to mitigate the long-term survival of damaged cells which otherwise would be detrimental for host survival. This pathway represents the final stage of the oxidative stress response, as it allows cells to be safely removed if the macromolecular damage caused by the original stressor is so extensive that it is beyond the repair capacity of the cell.


Assuntos
Fígado , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Transporte Biológico , Ativação Transcricional , Camundongos Knockout
19.
Science ; 381(6655): 306-312, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37471542

RESUMO

Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases but traditional intracranial depth electrodes require invasive surgery to place and can disrupt neural networks during implantation. We developed an ultrasmall and flexible endovascular neural probe that can be implanted into sub-100-micrometer-scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.


Assuntos
Encéfalo , Eletrodos Implantados , Microeletrodos , Encéfalo/fisiologia , Córtex Cerebral/fisiologia , Animais , Procedimentos Endovasculares
20.
Transl Oncol ; 35: 101710, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37320873

RESUMO

The history of low-dose radiotherapy (LDRT or LDR) as a treatment modality for malignant tumors dates back to the 1920s. Even with the minimal total dose administered during treatment, LDRT can result in long-lasting remission. Autocrine and paracrine signaling are widely recognized for fostering the growth and development of tumor cells. LDRT exerts systemic anti-tumor effects through various mechanisms, such as enhancing the activity of immune cells and cytokines, shifting the immune response towards an anti-tumor phenotype, influencing gene expression, and blocking crucial immunosuppressive pathways. Additionally, LDRT has been demonstrated to enhance the infiltration of activated T cells and initiate a series of inflammatory processes while modulating the tumor microenvironment. In this context, the objective of receiving radiation is not to directly kill tumor cells but to reprogram the immune system. Enhancing anti-tumor immunity may be a critical mechanism by which LDRT plays a role in cancer suppression. Therefore, this review primarily focuses on the clinical and preclinical efficacy of LDRT in combination with other anti-cancer strategies, such as the interaction between LDRT and the tumor microenvironment, and the remodeling of the immune system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA