Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 51(10): 699-704, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25180256

RESUMO

BACKGROUND: Disseminated superficial actinic porokeratosis (DSAP) is a rare autosomal dominant genodermatosis characterised by annular lesions that has an atrophic centre and a prominent peripheral ridge distributed on sun exposed area. It exhibits high heterogeneity, and five linkage loci have been reported. The mevalonate kinase (MVK) gene located on 12q24 has been confirmed as one of the disease-causing genes. But, the pathogenesis of a large part of DSAP remains unclear so far. METHODS: The recruited with DSAP carried no MVK coding mutations. Exome sequencing was performed in two affected and one unaffected individual in Family 1. Cosegregation of the candidate variants was tested in other family members. Sanger sequencing in 33 individuals with familial DSAP and 19 sporadic DSAP individuals was performed for validating the causative gene. RESULTS: An average of 1.35×10(5) variants were generated from exome data and 133 novel NS/SS/indels were identified as being shared by two affected individuals but absent in the unaffected individual. After functional prediction, 25 possible deleterious variants were identified. In Family 1, a missense variant c.932G>A (p.Arg311Gln) in exon 10 of SLC17A9 was observed in cosegregation with the phenotype; this amino acid substitution was located in a highly conserved major facilitator superfamily (MFS) domain in multiple mammalian. One additional missense variant c.25C>T (p.Arg9Cys) in exon 2 of SLC17A9 was found in Family 2. CONCLUSIONS: The result identified SLC17A9 as another pathogenic gene for DSAP, which suggests a correlation between the aberrant vesicular nucleotide transporter and the pathogenesis of DSAP.


Assuntos
Povo Asiático/genética , Proteínas de Transporte de Nucleotídeos/genética , Poroceratose/genética , China , Análise Mutacional de DNA , Exoma , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
2.
Nat Commun ; 5: 4331, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25006012

RESUMO

In a previous large-scale exome sequencing analysis for psoriasis, we discovered seven common and low-frequency missense variants within six genes with genome-wide significance. Here we describe an in-depth analysis of noncoding variants based on sequencing data (10,727 cases and 10,582 controls) with replication in an independent cohort of Han Chinese individuals consisting of 4,480 cases and 6,521 controls to identify additional psoriasis susceptibility loci. We confirmed four known psoriasis susceptibility loci (IL12B, IFIH1, ERAP1 and RNF114; 2.30 × 10(-20)≤P≤2.41 × 10(-7)) and identified three new susceptibility loci: 4q24 (NFKB1) at rs1020760 (P=2.19 × 10(-8)), 12p13.3 (CD27-LAG3) at rs758739 (P=4.08 × 10(-8)) and 17q12 (IKZF3) at rs10852936 (P=1.96 × 10(-8)). Two suggestive loci, 3p21.31 and 17q25, are also identified with P<1.00 × 10(-6). The results of this study increase the number of confirmed psoriasis risk loci and provide novel insight into the pathogenesis of psoriasis.


Assuntos
Antígenos CD/genética , Povo Asiático/genética , Predisposição Genética para Doença , Fator de Transcrição Ikaros/genética , Subunidade p50 de NF-kappa B/genética , Psoríase/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Adulto , Estudos de Casos e Controles , China , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem , Proteína do Gene 3 de Ativação de Linfócitos
3.
Cell Rep ; 3(1): 211-22, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23260670

RESUMO

Gambogic acid (GA) is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.


Assuntos
Especificidade de Órgãos/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Xantonas/farmacologia , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Camundongos , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Tripsina/metabolismo , Ubiquitinação/efeitos dos fármacos , Xantonas/química
4.
PLoS One ; 7(11): e49062, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139833

RESUMO

L-carnitine (LC) is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1) LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2) LC treatment selectively induces the expression of p21(cip1) gene, mRNA and protein in cancer cells but not p27(kip1); (4) LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5) LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6) LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1) gene but not p27(kip1) detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.


Assuntos
Carnitina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/enzimologia , Neoplasias/patologia , Acetilação/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
PLoS One ; 7(12): e52576, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285100

RESUMO

Combinations of proteasome inhibitors and histone deacetylases (HDAC) inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC) is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel) was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1) gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like) activity assay. Here we report that (i) the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii) the combination also synergistically inhibits tumor growth in vivo; (iii) two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1) expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Carnitina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Bortezomib , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Histonas/metabolismo , Humanos , Masculino , Camundongos , Modelos Biológicos , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/metabolismo
6.
Front Biosci (Elite Ed) ; 3(4): 1315-25, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622138

RESUMO

Several flavonoids have been reported to be proteasome inhibitors, but whether prenylated flavonoids are able to inhibit proteasome function remains unknown. We report for the first time that Sanggenon C, a natural prenylated flavonoid, inhibits tumor cellular proteasomal activity and cell viability. We found that (1) Sanggenon C inhibited tumor cell viability and induced cell cycle arrest at G0/G1 phase; (2) Sanggenon C inhibited the chymotrypsin-like activity of purified human 20S proteasome and 26S proteasome in H22 cell lysate, and Sanggenon C was able to dose-dependently accumulate ubiquitinated proteins and proteasome substrate protein p27; (3) Sanggenon C-induced proteasome inhibition occurred prior to cell death in murine H22 and P388 cell lines; (4) Sanggenon C induced death of human K562 cancer cells and primary cells isolated from leukemic patients. We conclude that Sanggenon C inhibits tumor cell viability via induction of cell cycle arrest and cell death, which is associated with its ability to inhibit the proteasome function and that proteasome inhibition by Sanggenon C at least partially contributes to the observed tumor cell growth-inhibitory activity.


Assuntos
Benzofuranos/farmacologia , Cromonas/farmacologia , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos
7.
Eur J Pharmacol ; 658(2-3): 242-7, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21392503

RESUMO

Shikonin, extracted from medicinal Chinese herb (Lithospermum erythrorhizo), was reported to exert anti-inflammatory and anti-cancer effects both in vitro and in vivo. We have found that proteasome was a molecular target of shikonin in tumor cells, but whether shikonin targets macrophage proteasome needs to be investigated. In the current study, we report that shikonin inhibited inflammation in mouse models as efficiently as dexamethasone. Shikonin at 4 µM reduced the Lipopolysaccharides (LPS)-mediated TNFα release in rat primary macrophage cultures, and blocked the translocation of p65-NF-κB from the cytoplasm to the nucleus, associated with decreased proteasomal activity. Consistently, shikonin accumulated IκB-α, an inhibitor of NF-κB, and ubiquitinated proteins in rat primary macrophage cultures, demonstrating that the proteasome is a target of shikonin under inflammatory conditions. Shikonin also induced macrophage cell apoptosis and cell death. These results demonstrate for the first time that proteasome inhibition by shikonin contributes to its anti-inflammatory effect. The novel finding about macrophage proteasome as a target of shikonin suggests that this medicinal compound has great potential to be developed into an anti-inflammatory agent.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Inibidores de Proteassoma , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Permeabilidade Capilar/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Pavilhão Auricular/efeitos dos fármacos , Pavilhão Auricular/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lithospermum/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , NF-kappa B/metabolismo , Naftoquinonas/uso terapêutico , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
8.
Cancer Lett ; 301(2): 221-8, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21216092

RESUMO

Proteasome inhibition has emerged as a novel approach to anticancer therapy. Numerous natural compounds, such as gambogic acid, have been tested in vitro and in vivo as anticancer agents for cancer prevention and therapy. However, whether gambogic acid has chemosensitizing properties when combined with proteasome inhibitors in the treatment of malignant cells is still unknown. In an effort to investigate this effect, human leukemia K562 cells, mouse hepatocarcinoma H22 cells and H22 cell allografts were treated with gambogic acid, a proteasome inhibitor (MG132 or MG262) or the combination of both, followed by measurement of cellular viability, apoptosis induction and tumor growth inhibition. We report, for the first time, that: (i) the combination of natural product gambogic acid and the proteasome inhibitor MG132 or MG262 results in a synergistic inhibitory effect on growth of malignant cells and tumors in allograft animal models and (ii) there was no apparent systemic toxicity observed in the animals treated with the combination. Therefore, the findings presented in this study demonstrate that natural product gambogic acid is a valuable candidate to be used in combination with proteasome inhibitors, thus representing a compelling anticancer strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores de Cisteína Proteinase/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Xantonas/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ácidos Borônicos/administração & dosagem , Ácidos Borônicos/farmacologia , Inibidores de Caspase , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Inibidores de Cisteína Proteinase/administração & dosagem , Sinergismo Farmacológico , Humanos , Células K562 , Leupeptinas/administração & dosagem , Leupeptinas/farmacologia , Masculino , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Inibidores da Síntese de Proteínas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transplante Homólogo , Carga Tumoral/efeitos dos fármacos , Xantonas/administração & dosagem
9.
Cell Res ; 20(12): 1372-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20805844

RESUMO

Intracellular protein degradation by the ubiquitin-proteasome system is ATP dependent, and the optimal ATP concentration to activate proteasome function in vitro is ∼100 µM. Intracellular ATP levels are generally in the low millimolar range, but ATP at a level within this range was shown to inhibit proteasome peptidase activities in vitro. Here, we report new evidence that supports a hypothesis that intracellular ATP at the physiological levels bidirectionally regulates 26S proteasome proteolytic function in the cell. First, we confirmed that ATP exerted bidirectional regulation on the 26S proteasome in vitro, with the optimal ATP concentration (between 50 and 100 µM) stimulating proteasome chymotrypsin-like activities. Second, we found that manipulating intracellular ATP levels also led to bidirectional changes in the levels of proteasome-specific protein substrates in cultured cells. Finally, measures to increase intracellular ATP enhanced, while decreasing intracellular ATP attenuated the ability of proteasome inhibition to induce cell death. These data strongly suggest that endogenous ATP within the physiological concentration range can exert a negative impact on proteasome activities, allowing the cell to rapidly upregulate proteasome activity on ATP reduction under stress conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Trifosfato de Adenosina/fisiologia , Apoptose , Ácidos Borônicos/farmacologia , Linhagem Celular , Humanos , Leupeptinas/farmacologia , Microscopia de Fluorescência , Oligomicinas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Tempo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA