Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301443, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607953

RESUMO

Gene therapy has the potential to facilitate targeted expression of therapeutic proteins to promote cartilage regeneration in osteoarthritis (OA). The dense, avascular, aggrecan-glycosaminoglycan (GAG) rich negatively charged cartilage, however, hinders their transport to reach chondrocytes in effective doses. While viral vector mediated gene delivery has shown promise, concerns over immunogenicity and tumorigenic side-effects persist. To address these issues, this study develops surface-modified cartilage-targeting exosomes as non-viral carriers for gene therapy. Charge-reversed cationic exosomes are engineered for mRNA delivery by anchoring cartilage targeting optimally charged arginine-rich cationic motifs into the anionic exosome bilayer by using buffer pH as a charge-reversal switch. Cationic exosomes penetrated through the full-thickness of early-stage arthritic human cartilage owing to weak-reversible ionic binding with GAGs and efficiently delivered the encapsulated eGFP mRNA to chondrocytes residing in tissue deep layers, while unmodified anionic exosomes do not. When intra-articularly injected into destabilized medial meniscus mice knees with early-stage OA, mRNA loaded charge-reversed exosomes overcame joint clearance and rapidly penetrated into cartilage, creating an intra-tissue depot and efficiently expressing eGFP; native exosomes remained unsuccessful. Cationic exosomes thus hold strong translational potential as a platform technology for cartilage-targeted non-viral delivery of any relevant mRNA targets for OA treatment.

2.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38047368

RESUMO

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Assuntos
Exossomos , Nanopartículas , Animais , Suínos , Leite , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Permeabilidade , Muco/metabolismo , Administração Oral , Portadores de Fármacos/química , Nanopartículas/química
3.
Acta Biomater ; 151: 278-289, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963518

RESUMO

Charge-based drug delivery has proven to be effective for targeting negatively charged cartilage for the treatment of osteoarthritis. Cartilage is surrounded by synovial fluid (SF), which is comprised of negatively charged hyaluronic acid and hydrophobic proteins that can competitively bind cationic carriers and prevent their transport into cartilage. Here we investigate the relative contributions of charge and hydrophobic effects on the binding of cationic carriers within healthy and arthritic SF by comparing the transport of arginine-rich cartilage targeting cationic peptide carriers with hydrophilic (CPC +14N) or hydrophobic property (CPC +14A). CPC +14N had significantly greater intra-cartilage uptake in presence of SF compared to CPC +14A in-vitro and in vivo. In presence of individual anionic SF constituents, both CPCs maintained similar high intra-cartilage uptake while in presence of hydrophobic constituents, CPC +14N had greater uptake confirming that hydrophobic and not charge interactions are the dominant cause of competitive binding within SF. Results also demonstrate that short-range effects can synergistically stabilize intra-cartilage charge-based binding - a property that can be utilized for enhancing drug-carrier residence time in arthritic cartilage with diminished negative fixed charge density. The work provides a framework for the rational design of cationic carriers for developing targeted therapies for another complex negatively charged environments. STATEMENT OF SIGNIFICANCE: This work demonstrates that hydrophobic and not charge interactions are the dominant cause of the binding of cationic carriers in synovial fluid. Therefore, cationic carriers can be effectively used for cartilage targeting if they are made hydrophilic. This can facilitate clinical translation of various osteoarthritis drugs for cartilage repair that have failed due to a lack of effective cartilage targeting methods. It also demonstrates that short-range hydrogen bonds can synergistically stabilize electrostatic binding in cartilage offering a method for enhancing the targeting and residence time of cationic carriers within arthritic cartilage with reduced charge density. Finally, the cartilage-synovial fluid unit provides an excellent model of a complex negatively charged environment and allows us to generalize these findings and develop targeted therapies for other charged tissue-systems.


Assuntos
Cartilagem Articular , Osteoartrite , Arginina/farmacologia , Ligação Competitiva , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Cátions/química , Portadores de Fármacos/química , Humanos , Ácido Hialurônico/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Peptídeos/química , Líquido Sinovial/metabolismo
4.
Biomater Sci ; 9(6): 2146-2161, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33496688

RESUMO

Strategies to direct the differentiation of endogenous bone marrow derived mesenchymal stem cells (BMSCs) in vivo following recruitment to the injured site are critical to realizing the potential of stem cell-based therapies. But the differentiation efficiency of BMSCs remains limited without direction. Here we demonstrated a novel strategy to promote neuronal differentiation of BMSCs using cross-linked polyethylenimine (PEI) grafted graphene oxide (GO) as the enzyme responsive vector for delivering active genes to BMSCs. In vivo, a core-shell microfiber arrayed hydrogel with a chemokine (SDF-1α) and the cross-linked GO-PEI/pDNAs-bFGF microparticles incorporated into the shell and core, respectively, were constructed. The arrayed hydrogel was shown to recruit and stimulate the neural-like differentiation of BMSCs effectively by delivering the CXCL12 and GO-PEI/pDNAs-bFGF in a self-controlled manner. With this strategy, both in vitro and in vivo neuronal differentiation of BMSCs with function were accelerated significantly. The cross-linked GO-PEI mediated gene transfection together with a multi-functional microfiber arrayed hydrogel provide a translatable approach for endogenous stem cell-based regenerative therapy.


Assuntos
Grafite , Células-Tronco Mesenquimais , Animais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Quimiocina CXCL12 , Hidrogéis , Ratos
5.
Acta Biomater ; 93: 258-269, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529083

RESUMO

Drug delivery to avascular, negatively charged tissues like cartilage remains a challenge. The constant turnover of synovial fluid results in short residence time of administered drugs in the joint space and the dense negatively charged matrix of cartilage hinders their diffusive transport. Drugs are, therefore, unable to reach their cell and matrix targets in sufficient doses, and fail to elicit relevant biological response, which has led to unsuccessful clinical trials. The high negative fixed charge density (FCD) of cartilage, however, can be used to convert cartilage from a barrier to drug entry into a depot by making drugs positively charged. Here we design cartilage penetrating and binding cationic peptide carriers (CPCs) with varying net charge, spatial distribution and hydrophobicity to deliver large-sized therapeutics and investigate their electro-diffusive transport in healthy and arthritic cartilage. We showed that CPC uptake increased with increasing net charge up to +14 but dropped as charge increased further due to stronger binding interactions that hindered CPC penetrability and uptake showing that weak-reversible binding is key to enable their penetration through full tissue thickness. Even after 90% GAG depletion, while CPC +14 uptake reduced by over 50% but still had a significantly high value of 148× showing that intra-tissue long-range charge-based binding is further stabilized by short-range H-bond and hydrophobic interactions. The work presents an approach for rational design of cationic carriers based on tissue FCD and properties of macromolecules to be delivered. These design rules can be extended to drug delivery for other avascular, negatively charged tissues. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) remains an untreatable disease partly due to short joint residence time of drugs and a lack of delivery methods that can effectively target the dense, avascular, highly negatively charged cartilage tissue. In this study, we designed cartilage penetrating and binding cationic peptide carriers (CPCs) that, due to their optimal charge provide adequate electrical driving force to rapidly transport OA drugs into cartilage and reach their cell and matrix targets in therapeutic doses before drugs exit the joint space. This way cartilage is converted from being a barrier to drug entry into a drug depot that can provide sustained drug release for several weeks. This study also investigates synergistic effects of short-range H-bond and hydrophobic interactions in combination with long-range electrostatic interactions on intra-cartilage solute transport. The work provides rules for rational design of cartilage penetrating charge-based carriers depending on the net charge of tissue (normal versus arthritic), macromolecule to be delivered and whether the application is in drug delivery or tissue imaging.


Assuntos
Cartilagem/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Osteoartrite/tratamento farmacológico , Peptídeos/química , Alanina/química , Sequência de Aminoácidos , Animais , Arginina/química , Transporte Biológico , Cátions/química , Bovinos , Preparações de Ação Retardada/administração & dosagem , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Lisina/química , Técnicas de Síntese em Fase Sólida , Eletricidade Estática , Líquido Sinovial/efeitos dos fármacos
6.
Biomaterials ; 103: 137-149, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27376562

RESUMO

Gold nanoparticles (AuNPs) have emerged as attractive non-viral gene vectors. However their application in regenerative medicine is still limited partially due to a lack of an intrinsic capacity to transfect difficult-to-transfect cells such as primary cells or stem cells. In current study, we report the synthesis of antimicrobial peptide conjugated cationic AuNPs (AuNPs@PEP) as highly efficient carriers for gene delivery to stem cells with antibacterial ability. The AuNPs@PEP integrate the advantages of cationic AuNPs and antibacterial peptides: the presence of cationic AuNPs can effectively condense DNA and the antimicrobial peptides are essential for the cellular & nucleus entry enhancement to achieve high transfection efficiency and antibacterial ability. As a result, antimicrobial peptides conjugated AuNPs significantly promoted the gene transfection efficiency in rat mesenchymal stem cells than pristine AuNPs, with a similar extent to those expressed by TAT (a well-known cell-penetrating peptide) modified AuNPs. More interestingly, the combinational system has better antibacterial ability than free antimicrobial peptides in vitro and in vivo, possibly due to the high density of peptides on the surface of AuNPs. Finally we present the concept-proving results that AuPs@PEP can be used as a carrier for in vivo gene activation in tissue regeneration, suggesting its potential as a multifunctional system with both gene delivery and antibacterial abilities in clinic.


Assuntos
Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Células-Tronco Mesenquimais/fisiologia , Nanopartículas Metálicas/administração & dosagem , Plasmídeos/genética , Staphylococcus aureus/efeitos dos fármacos , Transfecção/métodos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Células Cultivadas , Técnicas de Transferência de Genes , Ouro/química , Células-Tronco Mesenquimais/microbiologia , Nanopartículas Metálicas/química , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Plasmídeos/administração & dosagem , Plasmídeos/química , Ratos , Ratos Sprague-Dawley , Vírus/genética
7.
J Biomed Nanotechnol ; 11(4): 680-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26310074

RESUMO

Repair of deep wounds by cell transplantation strongly depends on angiogenesis and on the regeneration of skin and appendages. In this study, plasmid DNA encoding vascular endothelial growth factor-165 (VEGF-165) was transduced into bone-marrow mesenchymal stem cells (MSCs) using a nonviral vector, ß-cyclodextrin-linked polyethylenimine, to enhance angiogenic capacity. The effects of MSCs administered by intradermal injection or transplantation on wound closure were compared in a full-thickness excision wound model. The results showed that the MSC-seeded sponge had significantly stronger acceleration in wound closure than the MSC injection. The effects on wound repair and regeneration of transplanted MSCs and pDNA-VEGF1 65-transfected MSCs (TMSCs) with gelatin/ß-tricalcium phosphate scaffold were also investigated. Compared with MSC transplantation, TMSC transplantation showed higher efficacy in stimulating wound closure, promoting dermal collagen synthesis and regulating the deposition of newly formed collagen. In addition, the angiogenic capacity of the TMSCs was higher than that of the MSCs. The results indicate that the nonviral genetic engineering of the MSCs is a promising strategy to enhance the angiogenic capacity of MSCs for wound repair and angiogenesis. Functional gene-activated MSCs may be used as cost-effective and accessible seed cells for skin tissue engineering and as novel carriers for wound gene therapy.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Polietilenoimina/química , Regeneração , Cicatrização , beta-Ciclodextrinas/química , Animais , Transplante de Células , Imuno-Histoquímica , Nanotecnologia , Plasmídeos/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Resistência à Tração , Antígenos Thy-1/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
ACS Appl Mater Interfaces ; 7(33): 18628-37, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26262951

RESUMO

Systemic administration of chemotherapeutic agents can cause indiscriminate drug distribution and severe toxicity. Until now, encapsulation and targeting of drugs have typically relied on synthetic vehicles, which cannot minimize the clearance by the renal system and may also increase the risk of chemical side effects. Cell membrane capsules (CMCs) provide a generic and far more natural approach to the challenges of drug encapsulation and delivery in vivo. Here aptamer AS1411, which can recognize and bind overexpressed nucleolin on a cancer cell membrane, was chemically conjugated onto CMCs. As a result, AS1411 modified CMCs showed enhanced ingestion in certain cancer cells in vitro and accumulation in mouse cancer xenografts in vivo. Chemotherapeutics and contrast agents with therapeutically significant concentrations can be packaged into CMCs by reversible permeating their plasma membranes. The systematic administration of cancer targeting CMCs loaded with doxorubicin hydrochloride can significantly inhibit tumor growth in mouse xenografts, with significantly reduced toxicity compared to free drug. These findings suggest that cancer targeting CMCs may have considerable benefits in drug delivery and cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Cápsulas/química , Membrana Celular/química , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/toxicidade , Portadores de Fármacos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Neoplasias/patologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Distribuição Tecidual , Transplante Heterólogo , Nucleolina
9.
Int J Nanomedicine ; 9: 1897-908, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24790432

RESUMO

Melanin is the one of most important pigments for skin color in mammals. Excessive biosynthesis of melanin induces various pigment disorders. Much effort has been made to develop regulators to minimize skin pigmentation abnormalities. However, only a few of them are used, primarily because of safety concerns and low efficiency. In this study, we aimed to construct a novel nanosphere-gel for sequential delivery of salidroside and paeonol, to investigate the synergistic effects of these drugs in anti-melanogenesis, and to decrease their potential for toxicity in high dosage. Nanospheres were prepared and characterized for their particle size, polydispersity index, zeta potential, and morphological properties. The optimized nanospheres were incorporated in carbomer hydrogel with both paeonol and salidroside entrapped to form a dual drug-releasing nanosphere-gel. With this nanosphere-gel, rapid release of salidroside from the hydrogel followed by sustained release of paeonol from the nanosphere was achieved. Using a classical model of the melanogenesis response to ultraviolet exposure, it was shown that the anti-melanogenesis effects of the dual drug-releasing system, in which the doses of the individual drugs were decreased by half, was obviously enhanced when compared with the effects of the single drug preparations. Mechanistically, the burst release of salidroside from the hydrogel may enable prompt suppression of melanocyte proliferation on exposure to ultraviolet B radiation, while the paeonol released in a sustained manner can provide continuous inhibition of tyrosinase activity in melanocytes. Combined delivery of salidroside and paeonol was demonstrated to be a promising strategy for enhancing the therapeutic efficacy of these agents in anti-melanogenesis and reducing their toxicity, so may have great potential in nanomedicine.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Glucosídeos/administração & dosagem , Melaninas/biossíntese , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Nanocápsulas/administração & dosagem , Neoplasias Induzidas por Radiação/prevenção & controle , Fenóis/administração & dosagem , Administração Tópica , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/química , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/síntese química , Difusão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Glucosídeos/química , Cobaias , Hidrogéis/química , Melanócitos/efeitos dos fármacos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanosferas/administração & dosagem , Nanosferas/química , Nanosferas/ultraestrutura , Fenóis/química , Resultado do Tratamento , Raios Ultravioleta
10.
Small ; 9(8): 1321-8, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23494938

RESUMO

Phase-controlled nickel sulfide (Ni3 S4 and NiS1.03 ) nanoparticle (NP)/nitrogen-doped graphene (NG) composites are prepared through a facile one-pot hydrothermal process. The composites show ultrahigh capacity retentions of 98.87% and 95.94% for Ni3 S4 /NG and NiS1.03 /NG electrodes, respectively, as anode materials for lithium ion batteries.

11.
Nanoscale ; 4(23): 7326-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23086132

RESUMO

We develop a facile method for the synthesis of an iron phthalocyanine (FePc) and nitrogen-doped graphene (NG) composite as a novel and efficient non-precious catalyst in the oxygen reduction reaction (ORR). The resulting product exhibits superior ORR catalytic activity, excellent tolerance to methanol crossover, and comparable stability to commercial Pt/C, which leads to the invention of a new non-precious catalyst for ORR in fuel cells.


Assuntos
Compostos Ferrosos/química , Grafite/química , Indóis/química , Nitrogênio/química , Oxigênio/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA