Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18948, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600368

RESUMO

Background: Germline HLA class I molecule supertypes are shown to correlate with response to anti-PD-1 therapy. Here, we investigate the significance of germline HLA-A and HLA-B supertypes in tumour microenvironment of non-small-cell lung cancer. Methods: Totally 278 NSCLC patients were collected retrospectively. HLA genotyping was conducted using next-generation sequencing. The evaluation of tumour-infiltrating lymphocytes was performed by multiplex immunohistochemistry assay. Correlations among HLA supertypes, tumour infiltrating lymphocytes, and clinicopathological characteristics were assessed. Results: HLA-A03 and HLA-B62 were the supertypes with the highest proportions, at 69.1% and 52.2%, respectively. HLA-A02 or HLA-B62, but not HLA-A03, associated with higher PD-L1+ tumour and stromal cells levels, CD68+ cells, and CD68+PD-L1+ cells. Patients with both HLA-A02 and HLA-B62 supertypes displayed significantly higher PD-L1+ cells, CD68+ cells, and CD8+ cells levels than patients with other supertypes (P = 0.0301, P = 0.0479, P = 0.0192). These cells collectively constitute a hot but immunosuppressive tumour microenvironment. Accordingly, patients with both HLA-A02 and HLA-B62 supertypes had short progression-free survival after surgery (HR = 2.27, P = 0.0373). Conclusions: The HLA-A02B62 supertype could serve as a possible indicator of poor prognosis in early-stage lung cancer. However, it may also act as a favorable prognostic factor for immunotherapy, given its association with a PD-L1-positive tumour microenvironment.

2.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 35(6): 712-6, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26242125

RESUMO

OBJECTIVE: To explore the inflammatory cascade mechanism through Toll like receptor 2 (TLR2) pathway after cerebral ischemia/reperfusion, and to study molecular mechanisms of Guanmaitong (GMT) Tablet for protecting brain damage. METHODS: We used bolt-line method to block/release the middle cerebral artery, causing cerebral ischemia/reperfusion (I/R) injury model. GMT Tablet was given by gastrogavage. Rats were then divided into the high dose GMT group (1200 mg/kg), the middle dose GMT group (600 mg/kg), the low dose GMT group (300 mg/kg), the positive control group (Tanakan, 20 mg/kg). Their right brain tissues were fixed in 10% neutral formalin. TLR2 expressions were detected by immunofluorescence staining. The total protein was extracted from right brain tissues by ultrasonica- tion. Expression levels of extracellular regulated protein kinases (ERK), phospho-extracellular regulated protein kinases (p-ERK), p38-mitogen activated protein kinases (p-ERK), phospho-p38-mitogen activated protein kinases [p-p38-MAPKs(p-p38)] were assessed by Western blot. Abdominal aortic blood was withdrawn. IL-6 and IL-1ß levels were detected by ELISA in brain tissues and serum. RESULTS: Compared with the sham-oepration group, expression levels of TLR2, ERK, p-ERK, p38, p-p38 protein were up-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1ß in brain tissues and serum were increased in the model group (P < 0.01). Expression levels of TLR2, ERK, p-ERK, p38, p-p38 were down-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1ß were reduced in brain tissues and serum in middle and high dose GMT groups (P < 0.05, P < 0.01). CONCLUSIONS: TLR2 pathway was involved in cerebral I/R injury. GMT protected neurons by down-regulating protein expressions of TLR2, ERK, p-ERK, p38, p-p38 and contents of IL-1ß and IL-6.


Assuntos
Isquemia Encefálica/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Infarto Cerebral , Regulação para Baixo , Interleucina-1beta , Interleucina-6 , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Comprimidos , Regulação para Cima
3.
Arch Biochem Biophys ; 575: 38-45, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25843419

RESUMO

The clinical efficacy of cisplatin in esophageal squamous cell carcinoma (ESCC) treatment remains undesirable. Src, a non-receptor tyrosine kinase involved in multiple fields of tumorigenesis, recently has been indicated as a promising therapeutic target in the treatment of solid tumors including ESCC. However, whether inhibition of Src activity can increase cisplatin efficacy in ESCC cells remains unknown. The present study found that inhibition of Src by its inhibitor-dasatinib sensitized ESCC cells to cisplatin in vitro. Our data also suggest a likely mechanism for this synergy that dasatinib reduces expression of critical oncogenic members of the signaling pathways, such as AKT or Stat3, and cisplatin-resistant molecules, such as ERCC1 and BRCA1, under the control of Src. Furthermore, dasatinib could sensitize ESCC cells to another platin-based agent, carboplatin. Therefore, this study provides a potential target for improving cisplatin efficacy in ESCC therapy.


Assuntos
Carcinoma de Células Escamosas/patologia , Cisplatino/farmacologia , Neoplasias Esofágicas/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Tiazóis/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Dasatinibe , Sinergismo Farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
Oncotarget ; 6(2): 1031-48, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25504436

RESUMO

Inflammatory cytokines and oxidative stress are two critical mediators in inflammation-associated cancer. Interleukin-6 (IL-6) is one of the most critical tumor-promoting cytokines in non-small cell lung cancer (NSCLC). In our recent study, we confirmed that NADPH oxidase 4 (NOX4), an important source of reactive oxygen species (ROS) production in NSCLC cells, promotes malignant progression of NSCLC. However, whether the crosstalk of NOX4 and IL-6 signalings exists in NSCLC remains undentified. In this study, we show that NOX4 expression is positively correlated with IL-6 expression in NSCLC tissues. Exogenous IL-6 treatment significantly enhances NOX4/ROS/Akt signaling in NSCLC cells. NOX4 also enhances IL-6 production and activates IL-6/STAT3 signaling in NSCLC cells. Specifically, NOX4 is confirmed to functionally interplay with IL-6 to promote NSCLC cell proliferation and survival. The in vivo results were similar to those obtained in vitro. These data indicate a novel NOX4-dependent link among IL-6 in the NSCLC microenvironment, oxidative stress in NSCLC cells and autocrined IL-6 in NSCLC cells. NOX4/Akt and IL-6/STAT3 signalings can reciprocally and positively regulate each other, leading to enhanced NSCLC cell proliferation and survival. Therefore, NOX4 may serve as a promising target against NSCLC alone with IL-6 signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , NADPH Oxidases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Humanos , Imuno-Histoquímica , Interleucina-6/genética , Interleucina-6/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos Nus , NADPH Oxidase 4 , NADPH Oxidases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
J Mol Cell Cardiol ; 80: 10-19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533937

RESUMO

Ischemic heart disease is a leading cause of death in human population and protection of myocardial infarction (MI) associated with ischemia-reperfusion (I/R) remains a challenge. MG53 is an essential component of the cell membrane repair machinery that protects injury to the myocardium. We investigated the therapeutic value of using the recombinant human MG53 (rhMG53) protein for treatment of MI. Using Langendorff perfusion of isolated mouse heart, we found that I/R caused injury to cardiomyocytes and release of endogenous MG53 into the extracellular solution. rhMG53 protein was applied to the perfusion solution concentrated at injury sites on cardiomyocytes to facilitate cardioprotection. With rodent models of I/R-induced MI, we established the in vivo dosing range for rhMG53 in cardioprotection. Using a porcine model of angioplasty-induced MI, the cardioprotective effect of rhMG53 was evaluated. Intravenous administration of rhMG53, either prior to or post-ischemia, reduced infarct size and troponin I release in the porcine model when examined at 24h post-reperfusion. Echocardiogram and histological analyses revealed that the protective effects of rhMG53 observed following acute MI led to long-term improvement in cardiac structure and function in the porcine model when examined at 4weeks post-operation. Our study supports the concept that rhMG53 could have potential therapeutic value for treatment of MI in human patients with ischemic heart diseases.


Assuntos
Cardiotônicos/farmacologia , Proteínas de Transporte/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas Recombinantes/farmacologia , Animais , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacocinética , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/farmacocinética , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Técnicas In Vitro , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/mortalidade , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Suínos , Proteínas com Motivo Tripartido
6.
Oncotarget ; 5(12): 4392-405, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24946933

RESUMO

NADPH oxidase 4 (NOX4) is deregulated in various cancers and involved in cancer proliferation and metastasis. However, what the role of NOX4 plays during malignant progression of non-small cell lung cancer (NSCLC) remains unknown. Our results show that NOX4 was upregulated in NSCLC cell lines and samples from patients, compared with controls; NOX4 protein levels were closely correlated with clinical disease stage and survival time. Overexpression of NOX4 in A549 and H460 NSCLC cells enhanced cell proliferation and invasion in vitro, and produced larger tumors, shorter survival time, and more lung metastasis in nude mice than control cells. On the contrary, NOX4 depletion inhibited NSCLC cell aggressiveness. Inhibition of PI3K/Akt pathway could sufficiently block the cellular effects of NOX4 overexpression in NSCLC cells both in vitro and in vivo. Specifically, we demonstrated that PI3K/Akt pathway also positively regulated NOX4 expression via NF-κB-mediated manner. Therefore, there existed a mutual positive regulation between NOX4 and PI3K/Akt signaling in NSCLC cells, and NOX4 was confirmed to functionally interplay with PI3K/Akt signaling to promote NSCLC cell proliferation and invasion. In conclusion, the positive feedback loop between NOX4 and PI3K/Akt signaling contributes to NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 4 , NADPH Oxidases/genética , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA