Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028616

RESUMO

BACKGROUND: Glioblastoma is a highly aggressive brain cancer that is resistant to conventional immunotherapy strategies. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody (FcE-aCTLA-4), has shown durable activity in "cold" and immunotherapy-refractory cancers. METHOD: We evaluated the efficacy and immune microenvironment phenotype of a mouse analogue of FcE-aCTLA-4 in treatment-refractory preclinical models of glioblastoma, both as a monotherapy and in combination with doxorubicin delivered via low-intensity pulsed ultrasound and microbubbles (LIPU/MB). Additionally, we studied 4 glioblastoma patients treated with doxorubicin, anti-PD-1 with concomitant LIPU/MB to investigate the novel effect of doxorubicin modulating FcγR expressions in tumor associated macrophages/microglia (TAMs). RESULTS: FcE-aCTLA-4 demonstrated high-affinity binding to FcγRIV, the mouse ortholog of human FcγRIIIA, which was highly expressed in TAMs in human glioblastoma, most robustly at diagnosis. Notably, FcE-aCTLA-4 mediated selective depletion of intra-tumoral regulatory T cells (Tregs) via TAM-mediated phagocytosis, while sparing peripheral Tregs. Doxorubicin, a chemotherapeutic drug with immunomodulatory functions, was found to upregulate FcγRIIIA on TAMs in glioblastoma patients who received doxorubicin and anti-PD-1 with concomitant LIPU/MB. In murine models of immunotherapy-resistant gliomas, a combinatorial regimen of FcE-aCTLA-4, anti-PD-1, and doxorubicin with LIPU/MB, achieved a 90% cure rate, that was associated robust infiltration of activated CD8+ T cells and establishment of immunological memory as evidenced by rejection upon tumor rechallenge. CONCLUSION: Our findings demonstrate that FcE-aCTLA-4 promotes robust immunomodulatory and anti-tumor effects in murine gliomas and is significantly enhanced when combined with anti-PD-1, doxorubicin, and LIPU/MB. We are currently investigating this combinatory strategy in a clinical trial (clinicaltrials.gov NCT05864534).

2.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844770

RESUMO

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Microbolhas , Receptor de Morte Celular Programada 1 , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Animais , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Polietilenoglicóis
3.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496540

RESUMO

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

4.
Clin Neurol Neurosurg ; 238: 108174, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422743

RESUMO

BACKGROUND: Deep brain stimulation (DBS) surgery is an effective treatment for movement disorders. Introduction of intracranial air following dura opening in DBS surgery can result in targeting inaccuracy and suboptimal outcomes. We develop and evaluate a simple method to minimize pneumocephalus during DBS surgery. METHODS: A retrospective analysis of prospectively collected data was performed on patients undergoing DBS surgery at our institution from 2014 to 2022. A total of 172 leads placed in 89 patients undergoing awake or asleep DBS surgery were analyzed. Pneumocephalus volume was compared between leads placed with PMT and leads placed with standard dural opening. (112 PMT vs. 60 OPEN). Immediate post-operative high-resolution CT scans were obtained for all leads placed, from which pneumocephalus volume was determined through a semi-automated protocol with ITK-SNAP software. Awake surgery was conducted with the head positioned at 15-30°, asleep surgery was conducted at 0°. RESULTS: PMT reduced pneumocephalus from 11.2 cm3±9.2 to 0.8 cm3±1.8 (P<0.0001) in the first hemisphere and from 7.6 cm3 ± 8.4 to 0.43 cm3 ± 0.9 (P<0.0001) in the second hemisphere. No differences in adverse events were noted between PMT and control cases. Lower rates of post-operative headache were observed in PMT group. CONCLUSION: We present and validate a simple yet efficacious technique to reduce pneumocephalus during DBS surgery.


Assuntos
Neoplasias Encefálicas , Estimulação Encefálica Profunda , Doença de Parkinson , Pneumocefalia , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Pneumocefalia/diagnóstico por imagem , Pneumocefalia/etiologia , Pneumocefalia/prevenção & controle , Neoplasias Encefálicas/etiologia , Vigília , Doença de Parkinson/cirurgia , Doença de Parkinson/etiologia
6.
Neurooncol Pract ; 10(4): 370-380, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457221

RESUMO

Background: Recurrent gliomas are therapeutically challenging diseases with few treatment options available. One area of potential therapeutic vulnerability is the presence of targetable oncogenic fusion proteins. Methods: To better understand the clinical benefit of routinely testing for fusion proteins in adult glioma patients, we performed a retrospective review of 647 adult patients with glioma who underwent surgical resection at our center between August 2017 and May 2021 and whose tumors were analyzed with an in-house fusion transcript panel. Results: Fifty-two patients (8%) were found to harbor a potentially targetable fusion with 11 (21%) of these patients receiving treatment with a fusion-targeted inhibitor. The targetable genes found to be involved in a fusion included FGFR3, MET, EGFR, NTRK1, NTRK2, BRAF, ROS1, and PIK3CA. Conclusions: This analysis demonstrates that routine clinical testing for gene fusions identifies a diverse repertoire of potential therapeutic targets in adult patients with glioma and can offer rational therapeutic options for patients with recurrent disease.

7.
Lancet Oncol ; 24(5): 509-522, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142373

RESUMO

BACKGROUND: Low-intensity pulsed ultrasound with concomitant administration of intravenous microbubbles (LIPU-MB) can be used to open the blood-brain barrier. We aimed to assess the safety and pharmacokinetics of LIPU-MB to enhance the delivery of albumin-bound paclitaxel to the peritumoural brain of patients with recurrent glioblastoma. METHODS: We conducted a dose-escalation phase 1 clinical trial in adults (aged ≥18 years) with recurrent glioblastoma, a tumour diameter of 70 mm or smaller, and a Karnofsky performance status of at least 70. A nine-emitter ultrasound device was implanted into a skull window after tumour resection. LIPU-MB with intravenous albumin-bound paclitaxel infusion was done every 3 weeks for up to six cycles. Six dose levels of albumin-bound paclitaxel (40 mg/m2, 80 mg/m2, 135 mg/m2, 175 mg/m2, 215 mg/m2, and 260 mg/m2) were evaluated. The primary endpoint was dose-limiting toxicity occurring during the first cycle of sonication and albumin-bound paclitaxel chemotherapy. Safety was assessed in all treated patients. Analyses were done in the per-protocol population. Blood-brain barrier opening was investigated by MRI before and after sonication. We also did pharmacokinetic analyses of LIPU-MB in a subgroup of patients from the current study and a subgroup of patients who received carboplatin as part of a similar trial (NCT03744026). This study is registered with ClinicalTrials.gov, NCT04528680, and a phase 2 trial is currently open for accrual. FINDINGS: 17 patients (nine men and eight women) were enrolled between Oct 29, 2020, and Feb 21, 2022. As of data cutoff on Sept 6, 2022, median follow-up was 11·89 months (IQR 11·12-12·78). One patient was treated per dose level of albumin-bound paclitaxel for levels 1 to 5 (40-215 mg/m2), and 12 patients were treated at dose level 6 (260 mg/m2). A total of 68 cycles of LIPU-MB-based blood-brain barrier opening were done (median 3 cycles per patient [range 2-6]). At a dose of 260 mg/m2, encephalopathy (grade 3) occurred in one (8%) of 12 patients during the first cycle (considered a dose-limiting toxicity), and in one other patient during the second cycle (grade 2). In both cases, the toxicity resolved and treatment continued at a lower dose of albumin-bound paclitaxel, with a dose of 175 mg/m2 in the case of the grade 3 encephalopathy, and to 215 mg/m2 in the case of the grade 2 encephalopathy. Grade 2 peripheral neuropathy was observed in one patient during the third cycle of 260 mg/m2 albumin-bound paclitaxel. No progressive neurological deficits attributed to LIPU-MB were observed. LIPU-MB-based blood-brain barrier opening was most commonly associated with immediate yet transient grade 1-2 headache (12 [71%] of 17 patients). The most common grade 3-4 treatment-emergent adverse events were neutropenia (eight [47%]), leukopenia (five [29%]), and hypertension (five [29%]). No treatment-related deaths occurred during the study. Imaging analysis showed blood-brain barrier opening in the brain regions targeted by LIPU-MB, which diminished over the first 1 h after sonication. Pharmacokinetic analyses showed that LIPU-MB led to increases in the mean brain parenchymal concentrations of albumin-bound paclitaxel (from 0·037 µM [95% CI 0·022-0·063] in non-sonicated brain to 0·139 µM [0·083-0·232] in sonicated brain [3·7-times increase], p<0·0001) and carboplatin (from 0·991 µM [0·562-1·747] in non-sonicated brain to 5·878 µM [3·462-9·980] µM in sonicated brain [5·9-times increase], p=0·0001). INTERPRETATION: LIPU-MB using a skull-implantable ultrasound device transiently opens the blood-brain barrier allowing for safe, repeated penetration of cytotoxic drugs into the brain. This study has prompted a subsequent phase 2 study combining LIPU-MB with albumin-bound paclitaxel plus carboplatin (NCT04528680), which is ongoing. FUNDING: National Institutes of Health and National Cancer Institute, Moceri Family Foundation, and the Panattoni family.


Assuntos
Encefalopatias , Glioblastoma , Adulto , Masculino , Humanos , Feminino , Adolescente , Paclitaxel Ligado a Albumina/efeitos adversos , Carboplatina , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Barreira Hematoencefálica , Paclitaxel , Encefalopatias/induzido quimicamente , Encefalopatias/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Nat Commun ; 14(1): 1566, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949040

RESUMO

Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Quinase 1 do Ponto de Checagem , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Imunidade , Microambiente Tumoral
9.
Oxf Open Neurosci ; 2: kvad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38596241

RESUMO

Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.

10.
Clin Cancer Res ; 28(14): 3156-3169, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35552677

RESUMO

PURPOSE: Paclitaxel (PTX) is one of the most potent and commonly used chemotherapies for breast and pancreatic cancer. Several ongoing clinical trials are investigating means of enhancing delivery of PTX across the blood-brain barrier for glioblastomas. Despite the widespread use of PTX for breast cancer, and the initiative to repurpose this drug for gliomas, there are no predictive biomarkers to inform which patients will likely benefit from this therapy. EXPERIMENTAL DESIGN: To identify predictive biomarkers for susceptibility to PTX, we performed a genome-wide CRISPR knockout (KO) screen using human glioma cells. The genes whose KO was most enriched in the CRISPR screen underwent further selection based on their correlation with survival in the breast cancer patient cohorts treated with PTX and not in patients treated with other chemotherapies, a finding that was validated on a second independent patient cohort using progression-free survival. RESULTS: Combination of CRISPR screen results with outcomes from patients with taxane-treated breast cancer led to the discovery of endoplasmic reticulum (ER) protein SSR3 as a putative predictive biomarker for PTX. SSR3 protein levels showed positive correlation with susceptibility to PTX in breast cancer cells, glioma cells, and in multiple intracranial glioma xenografts models. KO of SSR3 turned the cells resistant to PTX while its overexpression sensitized the cells to PTX. Mechanistically, SSR3 confers susceptibility to PTX through regulation of phosphorylation of ER stress sensor IRE1α. CONCLUSIONS: Our hypothesis generating study showed SSR3 as a putative biomarker for susceptibility to PTX, warranting its prospective clinical validation.


Assuntos
Antineoplásicos Fitogênicos , Biomarcadores Farmacológicos , Neoplasias Encefálicas , Neoplasias da Mama , Proteínas de Ligação ao Cálcio , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Glicoproteínas de Membrana , Paclitaxel , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Endorribonucleases/metabolismo , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Paclitaxel/uso terapêutico , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Trends Pharmacol Sci ; 42(12): 976-978, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34657723

RESUMO

Pseudouridine is the most abundant yet unexplored RNA modification in glioblastoma. Cui and coworkers find that PUS7, a pseudouridine depositing enzyme, promotes tumor growth and can be targeted by small molecule inhibitors. Mechanistically, PUS7 modifies tRNAs, reduces TYK2 translation, and downregulates a proliferation-restricting interferon-STAT1 pathway in glioblastoma.


Assuntos
Glioblastoma , Transferases Intramoleculares , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Pseudouridina/metabolismo , RNA de Transferência/metabolismo
12.
Front Oncol ; 11: 664236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568006

RESUMO

Tumor heterogeneity is a key reason for therapeutic failure and tumor recurrence in glioblastoma (GBM). Our chimeric antigen receptor (CAR) T cell (2173 CAR T cells) clinical trial (NCT02209376) against epidermal growth factor receptor (EGFR) variant III (EGFRvIII) demonstrated successful trafficking of T cells across the blood-brain barrier into GBM active tumor sites. However, CAR T cell infiltration was associated only with a selective loss of EGFRvIII+ tumor, demonstrating little to no effect on EGFRvIII- tumor cells. Post-CAR T-treated tumor specimens showed continued presence of EGFR amplification and oncogenic EGFR extracellular domain (ECD) missense mutations, despite loss of EGFRvIII. To address tumor escape, we generated an EGFR-specific CAR by fusing monoclonal antibody (mAb) 806 to a 4-1BB co-stimulatory domain. The resulting construct was compared to 2173 CAR T cells in GBM, using in vitro and in vivo models. 806 CAR T cells specifically lysed tumor cells and secreted cytokines in response to amplified EGFR, EGFRvIII, and EGFR-ECD mutations in U87MG cells, GBM neurosphere-derived cell lines, and patient-derived GBM organoids. 806 CAR T cells did not lyse fetal brain astrocytes or primary keratinocytes to a significant degree. They also exhibited superior antitumor activity in vivo when compared to 2173 CAR T cells. The broad specificity of 806 CAR T cells to EGFR alterations gives us the potential to target multiple clones within a tumor and reduce opportunities for tumor escape via antigen loss.

13.
Cell Stem Cell ; 28(9): 1657-1670.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961804

RESUMO

Human brain organoids represent remarkable platforms for recapitulating features of human brain development and diseases. Existing organoid models do not resolve fine brain subregions, such as different nuclei in the hypothalamus. We report the generation of arcuate organoids (ARCOs) from human induced pluripotent stem cells (iPSCs) to model the development of the human hypothalamic arcuate nucleus. Single-cell RNA sequencing of ARCOs revealed significant molecular heterogeneity underlying different arcuate cell types, and machine learning-aided analysis based on the neonatal human hypothalamus single-nucleus transcriptome further showed a human arcuate nucleus molecular signature. We also explored ARCOs generated from Prader-Willi syndrome (PWS) patient iPSCs. These organoids exhibit aberrant differentiation and transcriptomic dysregulation similar to postnatal hypothalamus of PWS patients, indicative of cellular differentiation deficits and exacerbated inflammatory responses. Thus, patient iPSC-derived ARCOs represent a promising experimental model for investigating nucleus-specific features and disease-relevant mechanisms during early human arcuate development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Prader-Willi , Diferenciação Celular , Humanos , Hipotálamo , Organoides
15.
16.
Semin Cell Dev Biol ; 111: 4-14, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32561297

RESUMO

Neurological disorders are challenging to study given the complexity and species-specific features of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue that are generated by self-organization and differentiation from pluripotent stem cells under optimized culture conditions. These brain organoids exhibit similar features of structural organization and cell type diversity as the developing human brain, creating opportunities to recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial attempt in the field to apply brain organoid models for the study of many different types of human neurological disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in both brain organoid technology as well as analytical methods have significant potentials to advance the understanding of neurological disorders and to uncover opportunities for meaningful therapeutic intervention.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/genética , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Organoides/metabolismo , Encéfalo/patologia , Diferenciação Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neurônios/citologia , Organoides/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cultura Primária de Células , Viroses/genética , Viroses/metabolismo , Viroses/patologia , Viroses/virologia
17.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32991668

RESUMO

Immunotherapy has revolutionized the treatment of many tumors. However, most glioblastoma (GBM) patients have not, so far, benefited from such successes. With the goal of exploring ways to boost anti-GBM immunity, we developed a B cell-based vaccine (BVax) that consists of 4-1BBL+ B cells activated with CD40 agonism and IFNγ stimulation. BVax migrates to key secondary lymphoid organs and is proficient at antigen cross-presentation, which promotes both the survival and the functionality of CD8+ T cells. A combination of radiation, BVax, and PD-L1 blockade conferred tumor eradication in 80% of treated tumor-bearing animals. This treatment elicited immunological memory that prevented the growth of new tumors upon subsequent reinjection in cured mice. GBM patient-derived BVax was successful in activating autologous CD8+ T cells; these T cells showed a strong ability to kill autologous glioma cells. Our study provides an efficient alternative to current immunotherapeutic approaches that can be readily translated to the clinic.


Assuntos
Ligante 4-1BB/imunologia , Linfócitos B/imunologia , Antígenos CD40/imunologia , Vacinas Anticâncer/imunologia , Glioblastoma/terapia , Interferon gama/imunologia , Neoplasias Experimentais/terapia , Ligante 4-1BB/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos CD40/genética , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia
18.
Clin Cancer Res ; 26(16): 4390-4401, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430477

RESUMO

PURPOSE: Cancer immunoediting shapes tumor progression by the selection of tumor cell variants that can evade immune recognition. Given the immune evasion and intratumor heterogeneity characteristic of gliomas, we hypothesized that CD8+ T cells mediate immunoediting in these tumors. EXPERIMENTAL DESIGN: We developed retrovirus-induced PDGF+ Pten -/- murine gliomas and evaluated glioma progression and tumor immunogenicity in the absence of CD8+ T cells by depleting this immune cell population. Furthermore, we characterized the genomic alterations present in gliomas that developed in the presence and absence of CD8+ T cells. RESULTS: Upon transplantation, gliomas that developed in the absence of CD8+ T cells engrafted poorly in recipients with intact immunity but engrafted well in those with CD8+ T-cell depletion. In contrast, gliomas that developed under pressure from CD8+ T cells were able to fully engraft in both CD8+ T-cell-depleted mice and immunocompetent mice. Remarkably, gliomas developed in the absence of CD8+ T cells exhibited increased aneuploidy, MAPK pathway signaling, gene fusions, and macrophage/microglial infiltration, and showed a proinflammatory phenotype. MAPK activation correlated with macrophage/microglia recruitment in this model and in the human disease. CONCLUSIONS: Our studies indicate that, in these tumor models, CD8+ T cells influence glioma oncogenic pathways, tumor genotype, and immunogenicity. This suggests immunoediting of immunogenic tumor clones through their negative selection by CD8+ T cells during glioma formation.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Evasão da Resposta Imune/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Glioma/genética , Glioma/patologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Microglia/imunologia , Microglia/patologia , Linfócitos T/patologia
19.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
20.
Clin Cancer Res ; 26(2): 477-486, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831565

RESUMO

PURPOSE: Paclitaxel shows little benefit in the treatment of glioma due to poor penetration across the blood-brain barrier (BBB). Low-intensity pulsed ultrasound (LIPU) with microbubble injection transiently disrupts the BBB allowing for improved drug delivery to the brain. We investigated the distribution, toxicity, and efficacy of LIPU delivery of two different formulations of paclitaxel, albumin-bound paclitaxel (ABX) and paclitaxel dissolved in cremophor (CrEL-PTX), in preclinical glioma models. EXPERIMENTAL DESIGN: The efficacy and biodistribution of ABX and CrEL-PTX were compared with and without LIPU delivery. Antiglioma activity was evaluated in nude mice bearing intracranial patient-derived glioma xenografts (PDX). Paclitaxel biodistribution was determined in sonicated and nonsonicated nude mice. Sonications were performed using a 1 MHz LIPU device (SonoCloud), and fluorescein was used to confirm and map BBB disruption. Toxicity of LIPU-delivered paclitaxel was assessed through clinical and histologic examination of treated mice. RESULTS: Despite similar antiglioma activity in vitro, ABX extended survival over CrEL-PTX and untreated control mice with orthotropic PDX. Ultrasound-mediated BBB disruption enhanced paclitaxel brain concentration by 3- to 5-fold for both formulations and further augmented the therapeutic benefit of ABX. Repeated courses of LIPU-delivered CrEL-PTX and CrEL alone were lethal in 42% and 37.5% of mice, respectively, whereas similar delivery of ABX at an equivalent dose was well tolerated. CONCLUSIONS: Ultrasound delivery of paclitaxel across the BBB is a feasible and effective treatment for glioma. ABX is the preferred formulation for further investigation in the clinical setting due to its superior brain penetration and tolerability compared with CrEL-PTX.


Assuntos
Albuminas/farmacologia , Albuminas/farmacocinética , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/farmacocinética , Polietilenoglicóis/química , Ultrassonografia/métodos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Glioma/patologia , Masculino , Camundongos , Camundongos Nus , Microbolhas/uso terapêutico , Nanopartículas/química , Taxa de Sobrevida , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA