Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 14208-14217, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445958

RESUMO

Pesticide detection and monitoring are necessary for human health as the overapplication has serious consequences for environmental pollution. Herein, a proper modulation strategy was implemented to construct the photostimulus-responsive peptide-dot-centered covalent organic polymer (P-PCOP) nanoarchitecture for selective sensing of pesticides. The as-constructed P-PCOP was prepared at room temperature by using amino-containing peptide dots as a building block instead of common organic molecules, and the merits of P-PCOP enable it to reduce the steric hindrance of recognition, enhance the interfacial contact of the target, and facilitate the accessibility of sites, which promises to improve the sensitivity. The P-PCOF exhibited a low detection limit of 0.38 µg L-1 to cartap over the range of 1-80 µg L-1 (R2 = 0.9845), and the recoveries percentage in real samples was estimated to be 93.39-105.82%. More importantly, the DFT calculation confirmed the selective recognition ability of P-PCOP on chemical pesticides. In conjunction with a smartphone-integrated portable reading device, on-site chemical sensing is achieved. The proper modulation strategy of fixing a functional guest on the COP system contributes to the advanced structure-chemical properties that are conducive to their applications in chemical sensing.


Assuntos
Poluição Ambiental , Praguicidas , Humanos , Teoria da Densidade Funcional , Peptídeos , Polímeros
2.
Angew Chem Int Ed Engl ; 62(49): e202312973, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37846843

RESUMO

Ether-based electrolytes are promising for secondary batteries due to their good compatibility with alkali metal anodes and high ionic conductivity. However, they suffer from poor oxidative stability and high toxicity, leading to severe electrolyte decomposition at high voltage and biosafety/environmental concerns when electrolyte leakage occurs. Here, we report a green ether solvent through a rational design of carbon-chain regulation to elicit steric hindrance, such a structure significantly reducing the solvent's biotoxicity and tuning the solvation structure of electrolytes. Notably, our solvent design is versatile, and an anion-dominated solvation structure is favored, facilitating a stable interphase formation on both the anode and cathode in potassium-ion batteries. Remarkably, the green ether-based electrolyte demonstrates excellent compatibility with K metal and graphite anode and a 4.2 V high-voltage cathode (200 cycles with average Coulombic efficiency of 99.64 %). This work points to a promising path toward the molecular design of green ether-based electrolytes for practical high-voltage potassium-ion batteries and other rechargeable batteries.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122285, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36592594

RESUMO

We constructed a smartphone-integrated optosensor with inexpensive, reversible, environmental friendly, and rapid adsorption to detect Cu(II) and L-cysteine (L-Cys). The key part of this study was to prepare a red-to-blue colorimetric probe from herbaceous andrographis paniculata using one-pot polymerization at room temperature. When Cu(II) existed, the red fluorescence on the surface of the core-shell probe was quenched, while the blue fluorescence of the core did not respond, because the colorimetric probe interacted with the Cu(II) on the surface of red CDs. After L-Cys added, it interacted with the Cu(II) to strip it from the surface of red CDs, resulting in the recovery of fluorescence response. Under optimal conditions, the detection limits of this method for Cu(II) and L-Cys were 71 nM and 12 nM, respectively. Further, the red-to-blue colorimetric probe was integrated into smartphone with a software application to convert fluorescent color images into specific red (R), green (G), and blue (B) values. The spiked recovery of Cu(II) and L-Cys in lake water was verified the feasibility of the developed optosensors with a recovery of 98.2-101.6 % and 103.3-121.6 %. This method for detecting Cu(II) and L-Cys can not only recognize metal ions from actual samples, but also effectively protect CDs from quenching and restore fluorescence.


Assuntos
Cisteína , Pontos Quânticos , Carbono , Espectrometria de Fluorescência/métodos , Colorimetria , Biomassa , Smartphone , Cobre , Corantes Fluorescentes
4.
ACS Sens ; 8(2): 694-703, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36706033

RESUMO

A visual and digital platform was constructed by peptide-based molecularly imprinted polymers (PMIPs) for specific recognition and detection of ethyl carbamate (EC). Here, the optosensing core was creatively constructed by the covalent assembly of dipeptides (H-Phe-Phe-OH) and genipin biomolecules for high fluorescence quantum yield and dual-signal response capability. MIPs were wrapped in the shell of the optosensing core for selectivity of EC from actual samples of alcoholic beverages. The genipin-FF nanoparticles (GFPNs)@PMIPs exhibited dual-band red-blue fluorescence image with a low detection limit of 0.817 and 1.65 µg L-1, respectively, in the optimal linear range of 2-240 µg L-1. The accuracy of this method was verified by the spiked recovery experiment, and a good recovery from 83.97 to 106.75% of the proposed optosensing method was obtained. In addition, a smartphone application was coupled with GFPNs@PMIPs to realize online real-time detection of EC. With the addition of EC, the color change of G and B values was negligible compared with the R value. This work also provides a potential method for on-site visual detection of analytes.


Assuntos
Impressão Molecular , Pontos Quânticos , Polímeros Molecularmente Impressos , Polímeros/química , Impressão Molecular/métodos , Pontos Quânticos/química , Uretana , Peptídeos
5.
J Fluoresc ; 33(3): 1111-1123, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36580202

RESUMO

Amino- and sulfhydryl- functionalized biomass carbon dots (BCDs) were prepared by one-pot reverse microemulsion for specific recognition of ferric ions (Fe3+) and L-cysteine (L-Cys). Green grapefruit peel was used as the carbon source while aminosilane and mercaptosilane were used as N- and S-supplier. Following the adsorption of Fe3+ on the surfaces of BCDs-NH2 and BCDs-SH, the fluorescence responses was quenched step by step, while adding L-Cys to the BCDs-NH2/Fe3+ system restored the fluorescence. The BCDs-NH2 and BCDs-SH system exhibited extremely low limits of detection for Fe3+ of 3.2 and 3.0 nM, respectively, within a wide linear ranges of 0.006-200 µM and 0.004-200 µM, respectively. The BCDs-NH2/Fe3+ systems were used as an optosensor for L-Cys in the concentration ranges of 0.08-30 and 30-1000 µM with a detection limit of 65 nM. Developed BCDs-NH2 and BCDs-SH were able to respond to Fe3+ in water samples with satisfactory recoveries of 100.1%-103.1% and 94.6%-108.5%, respectively, and the BCDs-NH2/Fe3+ system was also able to respond to BCDs-NH2/Fe3+ in actual lake water samples with recoveries from 87.3% to 98.8%. Meanwhile, The BCDs-NH2 exhibited good photoluminescence and stability, and the with a fluorescence quantum yield was as high as 25%. This work demonstrates the feasibility of using such materials to remove hazardous ions from water and employing the resulting complexes for optosensing in a sustainable manner.


Assuntos
Cisteína , Pontos Quânticos , Carbono , Biomassa , Água , Íons
6.
Molecules ; 27(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807347

RESUMO

This study designed a "turn-off-on" fluorescence analysis method based on carbon quantum dots (CQDs) to detect metal ions and amino acids in real sample systems. CQDs were derived from green pomelo peel via a one-step hydrothermal process. The co-doped CQDs with N and S atoms imparted excellent optical properties (quantum yield = 17.31%). The prepared CQDs could be used as fluorescent "turn-off" probes to detect Fe3+ with a limit of detection of 0.086 µM, a linear detection range of 0.1-160 µM, and recovery of 83.47-106.53% in water samples. The quenched CQD fluorescence could be turned on after adding L-cysteine (L-Cys), which allowed detection of L-Cys with a detection limit of 0.34 µM and linear range of 0.4-85 µM. Recovery of L-Cys in amino acid beverage was 87.08-122.74%. Visual paper-based testing strips and cellulose/CQDs composite hydrogels could be also used to detect Fe3+ and L-Cys.


Assuntos
Pontos Quânticos , Carbono/química , Cisteína/análise , Corantes Fluorescentes/química , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos
7.
Foods ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35742012

RESUMO

As a special polyphenolic compound in oats, the physiological function of oat avenanthramides (AVAs) drives a variety of biological activities, and plays an important role in the prevention and treatment of common chronic diseases. In this study, the optimum extraction conditions and structural identification of AVAs from oats was studied. The inhibitory effect of AVAs from oats on advanced glycation end-products (AGEs) in a glucose-casein simulation system was evaluated, and this revealed dose-dependent inhibitory effects. The trapping capacity of AVAs to the α-dicarbonyl compounds of AGE intermediate products was determined by HPLC-MS/MS, and the results indicate that AVA 2c, AVA 2p, and AVA 2f exhibited the ability to capture α-dicarbonyl compounds. More importantly, AVA 2f was found to be more efficient than AVA 2p at inhibiting superoxide anion radical (O2-), hydroxyl radical (OH), and singlet oxygen (1O2) radical generation, which may be the main reason that AVA 2f was more efficient than AVA 2p in AGE inhibition. Thus, this research presents a promising application of AVAs from oats in inhibiting the food-borne AGEs formed in food processing.

8.
Anal Chim Acta ; 1192: 339381, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35057951

RESUMO

Ethyl carbamate (EC), which is a group 2A carcinogen, is a byproduct formed in the alcohol fermentation process that can accumulate with heating, transportation, and storage. In this study, molecularly imprinted polymers (MIPs) on carbazole-based covalent organic frameworks (COFs) were prepared as a fluorescence probe for the optosensing of EC in fermented alcoholic beverages. The excellent optical properties of carbazole-based COFs coupled with the good adsorption and selectivity of MIPs provided fast and efficient recognition of EC. MIPs on carbazole-based COFs exhibited advantages of high efficiency, a good separation effect, fluorescence dependence, and reproducibility. A good linear relationship was obtained over the concentration range of 1-200 µg L-1, with a low limit of detection (LOD) of 0.607 µg L-1. The RSD precision and five-cycle reproducibility were lower than 4.91% and 6.38%, respectively, and the recoveries were 85.30%-109.49%. This optosensor was applied to quantify EC contents in several fermented alcoholic beverages, all of which were less than LOD. The results of the optosensors based on MIPs on carbazole-based COFs were then validated using standard gas chromatography-mass spectrometry (GC-MS), which gave results consistent with the proposed method.


Assuntos
Estruturas Metalorgânicas , Uretana , Bebidas Alcoólicas/análise , Carbazóis , Corantes Fluorescentes , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Uretana/análise
9.
Nanoscale ; 13(47): 20213-20224, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34850803

RESUMO

The structural collapse and surface chemical degradation of nickel-rich layered oxide cathodes (NCM) of lithium-ion batteries during operation, which result in severe capacity attenuation, are the major challenges that hinder their commercial development. To improve the cycle and rate performances of LiNi0.8Co0.1Mn0.1O2 (NCM811), in this study, we have constructed a double-shell structure protective layer with a surface CeO2-x coating and interfacial spinel-like phase, which mitigate particle microcrack formation and isolate the NCM811 particles from electrolyte erosion. Additionally, during heat-treatment calcination, tetravalent cerium ions with strong oxidation ability can be partially doped into the material, which causes partial oxidation of Ni2+ to Ni3+, thereby reducing the Li+/Ni2+ mixing. The strong Ce-O bonds formed in the lattice help to improve the stability of the structure in the highly de-lithiated state. Thus, the synergy of multifunctional cerium modification effectively improves the structural stability and electrochemical kinetics of the material during cycling. Impressively, the obtained Ce-NCM811 exhibits capacity retention of 80.3% at a high discharge rate of 8 C after 500 cycles, which is much higher than that of the pristine cathode (only 44.3%). This work successfully designed a material with multi-functional Ce modification to provide a basis for Ni-rich cathode materials, which is crucial as it effectively improves the electrochemical performance.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(4): 816-8, 2007 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-17608208

RESUMO

Quantitative analyses of mixture composed of iron oxides and metal iron were investigated by means of powder X-ray diffraction and chemical analysis methods for iron oxides reduction by H2 and CO, respectively. The coefficients of quantitative molar intensity ratio of ferrite (alphaFe), austenite (gammaFe), iron carbide (Fe3C), magnetite (Fe3O4) and hematite (Fe2O3) to wustite (Fe(0.947)O) are 0.56, 0.56, 0.52, 0.87 and 2.57 respectively. The degrees of metallization and reduction of iron oxide were calculated according to these coefficients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA