RESUMO
Integrin genes are widely involved in tumorigenesis. Yet, a comprehensive characterization of integrin family members and their interactome at the pan-cancer level is lacking. Here, we systematically analyzed integrin family in approximately 10,000 tumors across 32 cancer types. Globally, integrins represent a frequently altered and misexpressed pathway, with alteration and dysregulation overall being protumorigenic. Expression dysregulation, better than mutational landscape, of integrin family successfully identifies a subgroup of aggressive tumors with a high level of proliferation and stemness. The results reveal that several molecular mechanisms collectively regulate integrin expression in a context-dependent manner. For potential clinical usage, we constructed a weighted scoring system, integrinScore, to measure integrin signaling patterns in individual tumors. Remarkably, integrinScore was consistently correlated with predefined molecular subtypes in multiple cancers, with integrinScore-high tumors being more aggressive. Importantly, integrinScore was cancer-dependent and closely associated with proliferation, stemness, tumor microenvironment, metastasis, and immune signatures. IntegrinScore also predicted patients' response to immunotherapy. By mining drug databases, we unraveled an array of compounds that may modulate integrin signaling. Finally, we built a user-friendly database, Pan-cancer Integrin Explorer (PIExplorer; http://computationalbiology.cn/PIExplorer), to facilitate researchers to explore integrin-related knowledge. Collectively, we provide a comprehensive characterization of integrins across cancers and offer gene-specific and cancer-specific rationales for developing integrin-targeted therapy.
Assuntos
Integrinas , Neoplasias , Humanos , Integrinas/genética , Integrinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genéticaRESUMO
Mounting evidence has implicated the RNA m6A methylation catalyzed by METTL3 in a wide range of physiological and pathological processes, including tumorigenesis. The detailed m6A landscape and molecular mechanism of METTL3 in prostate cancer (PCa) remains ill-defined. We find that METTL3 is overexpressed in PCa and correlates with worse patient survival. Functional studies establish METTL3 as an oncoprotein dependent on its m6A enzymatic activity in both AR+ and AR- PCa cells. To dissect the regulatory network of m6A pathway in PCa, we map the m6A landscape in clinical tumor samples using m6A-seq and identify genome-wide METTL3-binding transcripts via RIP-seq. Mechanistically, we discover RRBP1 as a direct METTL3 target in which METTL3 stabilizes RRBP1 mRNA in an m6A-dependent manner. RRBP1 positively correlates with METTL3 expression in PCa cohorts and exerts an oncogenic role in aggressive PCa cells. Leveraging the 3D structural protein-protein interaction between METTL3 and METTL14, we successfully develop two potential METTL3 peptide inhibitors (RM3 and RSM3) that effectively suppress cancer cell proliferation in vitro and tumor growth in vivo. Collectively, our study reveals a novel METTL3/m6A/RRBP1 axis in enhancing aggressive traits of PCa, which can be therapeutically targeted by small-peptide METTL3 antagonists.
Assuntos
Metiltransferases , Neoplasias da Próstata , RNA Mensageiro , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Estabilidade de RNA/genética , Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Protein arginine methylation is a common post-translational modification (PTM) catalyzed by nine protein arginine methyltransferases (PRMTs). As the major symmetric arginine methyltransferase that methylates both histone and non-histone substrates, PRMT5 plays key roles in a number of biological processes critical for development and tumorigenesis. PRMT5 overexpression has been reported in multiple cancer types including prostate cancer (PCa), but the exact biological and mechanistic understanding of PRMT5 in aggressive PCa remains ill-defined. Here, we show that PRMT5 is upregulated in PCa, correlates with worse patient survival, promotes corrupted RNA splicing, and functionally cooperates with an array of pro-tumorigenic pathways to enhance oncogenesis. PRMT5 inhibition via either genetic knockdown or pharmacological inhibition reduces stemness with paralleled differentiation and arrests cell cycle progression without causing appreciable apoptosis. Strikingly, the severity of antitumor effect of PRMT5 inhibition correlates with disease aggressiveness, with AR+ PCa being less affected. Molecular characterization pinpoints MYC, but not (or at least to a lesser degree) AR, as the main partner of PRMT5 to form a positive feedback loop to exacerbate malignancy in both AR+ and AR- PCa cells. Inspired by the surprising finding that PRMT5 negatively correlates with tumor immune infiltration and transcriptionally suppresses an immune-gene program, we further show that although PRMT5 inhibitor (PRMT5i) EPZ015666 or anti-PD-1 immunotherapy alone exhibits limited antitumor effects, combination of PRMT5i with anti-PD-1 displays superior efficacy in inhibiting castration-resistant PCa (CRPC) in vivo. Finally, to expand the potential use of PRMT5i through a synthetic lethality concept, we also perform a global CRISPR/Cas9 knockout screen to unravel that many clinical-grade drugs of known oncogenic pathways can be repurposed to target CRPC when used in combination with PRMT5i at low doses. Collectively, our findings establish a rationale to exploit PRMT5i in combination with immunotherapy or other targeted therapies to treat aggressive PCa.
Assuntos
Neoplasias da Próstata , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Masculino , Humanos , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia/métodos , Regulação Neoplásica da Expressão GênicaRESUMO
METTL3 has emerged as a promising therapeutic target in cancer treatment, although its oncogenic functions in melanoma development and potential for therapeutic targeting drug have not been fully explored. In this study, we define the oncogenic role of METTL3 in melanoma development and progression. Building on this insight, we examine our recently designed peptide inhibitor RM3, which targets the binding interface of METTL3/14 complex for disruption and subsequent ubiquitin-mediated proteasomal degradation via the E3 ligase STUB1. RM3 treatment reduces proliferation, migration, and invasion, and induces apoptosis in melanoma cells in vitro and in vivo. Subsequent transcriptomic analysis identified changes in immuno-related genes following RM3-mediated suppression of METTL3/14 N6-methyladenosine (m6A) methyltransferase activity, suggesting a potential for interaction with immunotherapy. A combination treatment of RM3 with anti-PD-1 antibody results in significantly higher beneficial tumor response in vivo, with a good safety profile. Collectively, these findings not only delineate the oncogenic role of METTL3 in melanoma but also showcase RM3, acting as a peptide degrader, as a novel and promising strategy for melanoma treatment.
RESUMO
Prostate cancer (PCa) remains a significant cause of morbidity and mortality among men worldwide. A number of genes have been implicated in prostate tumorigenesis, but the mechanisms underlying their dysregulation are still incompletely understood. Evidence has established the competing endogenous RNA (ceRNA) theory as a novel regulatory mechanism for post-transcriptional alterations. Yet, a comprehensive characterization of ceRNA network in PCa lacks. Here we utilize stringent in-silico methods to construct a large ceRNA network across different PCa stages, and provide experimental demonstration for the competing regulation among protumorigenic SEC23A, PHTF2, and their corresponding ceRNA pairs. Using machine learning, we establish a ceRNA-based signature (ceRNA_sig) predictive of androgen receptor (AR) activity, tumor aggressiveness, and patient outcomes. Importantly, we identify miR-375 as a key node in PCa ceRNA network, which is upregulated in PCa relative to normal tissues. Forced expression of miR-375 significantly inhibits, while its inhibition promotes, aggressive behaviors of both AR+ and AR- PCa cells in vitro and in vivo. Mechanistically, we show that miR-375 predominantly targets genes possessing oncogenic roles (e.g., proliferation, DNA repair, and metastasis), and thus release targets with tumor suppressive functions. This action model well clarifies why an upregulated miRNA plays a tumor suppressive role in PCa. Together, our study provides new insights into understanding of transcriptomic aberrations during PCa evolution, and nominates miR-375 as a potential therapeutic target for combating aggressive PCa.
Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs , Neoplasias da Próstata , MicroRNAs/genética , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Masculino , Camundongos , Animais , Regulação para Cima/genética , Linhagem Celular Tumoral , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Genes Supressores de Tumor , Proliferação de Células/genética , RNA Endógeno CompetitivoRESUMO
METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.
Assuntos
Antineoplásicos , Metiltransferases , Peptídeos , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacosRESUMO
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Recidiva Local de Neoplasia , Fatores de Transcrição/metabolismo , Biossíntese de Proteínas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.
Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS: Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS: YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS: Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.
Assuntos
Interleucina-6 , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Interleucina-6/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/patologia , Macrófagos/metabolismo , Camundongos Transgênicos , Microambiente Tumoral , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismoRESUMO
Myelodysplastic syndromes (MDS) are age-related myeloid neoplasms with increased risk of progression to acute myeloid leukemia (AML). The mechanisms of transformation of MDS to AML are poorly understood, especially in relation to the aging microenvironment. We previously established an mDia1/miR-146a double knockout (DKO) mouse model phenocopying MDS. These mice develop age-related pancytopenia with oversecretion of proinflammatory cytokines. Here, we found that most of the DKO mice underwent leukemic transformation at 12-14 months of age. These mice showed myeloblast replacement of fibrotic bone marrow and widespread leukemic infiltration. Strikingly, depletion of IL-6 in these mice largely rescued the leukemic transformation and markedly extended survival. Single-cell RNA sequencing analyses revealed that DKO leukemic mice had increased monocytic blasts that were reduced with IL-6 knockout. We further revealed that the levels of surface and soluble IL-6 receptor (IL-6R) in the bone marrow were significantly increased in high-risk MDS patients. Similarly, IL-6R was also highly expressed in older DKO mice. Blocking of IL-6 signaling significantly ameliorated AML progression in the DKO model and clonogenicity of CD34-positive cells from MDS patients. Our study establishes a mouse model of progression of age-related MDS to AML and indicates the clinical significance of targeting IL-6 signaling in treating high-risk MDS.
Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Medula Óssea , Interleucina-6/genética , Leucemia Mieloide Aguda/genética , Camundongos , Síndromes Mielodisplásicas/genética , Transdução de Sinais , Microambiente TumoralRESUMO
The molecular mechanisms underpinning prostate cancer (PCa) progression are incompletely understood, and precise stratification of aggressive primary PCa (pri-PCa) from indolent ones poses a major clinical challenge. Here, we comprehensively dissect, genomically and transcriptomically, the m6A (N 6-methyladenosine) pathway as a whole in PCa. Expression, but not the genomic alteration, repertoire of the full set of 24 m6A regulators at the population level successfully stratifies pri-PCa into three m6A clusters with distinct molecular and clinical features. These three m6A modification patterns closely correlate with androgen receptor signaling, stemness, proliferation and tumor immunogenicity of cancer cells, and stroma activity and immune landscape of tumor microenvironment (TME). We observe a discrepancy between a potentially higher neoantigen production and a deficiency in antigen presentation processes in aggressive PCa, offering insights into the failure of immunotherapy. Identification of PCa-specific m6A phenotype-associated genes provides a basis for construction of m6Avalue to measure m6A methylation patterns in individual patients. Tumors with lower m6Avalue are relatively indolent with abundant immune cell infiltration and stroma activity. Interestingly, m6Avalue separates PCa TME into fibrotic and nonfibrotic phenotypes (instead of previously reported immune-proficient or -desert phenotypes in other cancer types). Significantly, m6Avalue can be used to predict drug response and clinical immunotherapy efficacy in both castration-resistant PCa and other cancer types. Therefore, our study establishes m6A methylation modification pattern as a determinant in PCa progression via impacting cancer cell aggressiveness and TME remodeling.
RESUMO
Integrins are the adhesion molecules and transmembrane receptors that consist of α and ß subunits. After binding to extracellular matrix components, integrins trigger intracellular signaling and regulate a wide spectrum of cellular functions, including cell survival, proliferation, differentiation and migration. Since the pattern of integrins expression is a key determinant of cell behavior in response to microenvironmental cues, deregulation of integrins caused by various mechanisms has been causally linked to cancer development and progression in several solid tumor types. In this review, we discuss the integrin signalosome with a highlight of a few key pro-oncogenic pathways elicited by integrins, and uncover the mutational and transcriptomic landscape of integrin-encoding genes across human cancers. In addition, we focus on the integrin-mediated control of cancer stem cell and tumor stemness in general, such as tumor initiation, epithelial plasticity, organotropic metastasis and drug resistance. With insights into how integrins contribute to the stem-like functions, we now gain better understanding of the integrin signalosome, which will greatly assist novel therapeutic development and more precise clinical decisions.
Assuntos
Integrinas/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Animais , Adesão Celular , Humanos , Integrinas/genética , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , TranscriptomaRESUMO
Drug delivery systems based on genetically engineered oncolytic bacteria have properties that cannot be achieved by traditional therapeutic interventions. Thus, they have attracted considerable attention in cancer therapies. Attenuated bacteria can specifically target and actively penetrate tumor tissues and play an important role in cancer suppression as the "factories" of diverse anticancer drugs. Over the past decades, several bacterial strains including Salmonella and Clostridium have been shown to effectively retard tumor growth and metastasis, and thus improve survival in preclinical models or clinical cases. In this review, we summarize the unique properties of oncolytic bacteria and their anticancer mechanisms and highlight the particular advantages compared with traditional strategies. With the current research progress, we demonstrate the potential value of oncolytic bacteria-based drug delivery systems for clinical applications. In addition, we discuss novel strategies of cancer therapies integrating oncolytic bacteria, which will provide hope to further improve and standardize the current regimens in the near future.
Assuntos
Neoplasias , Terapia Viral Oncolítica , Bactérias , Sistemas de Liberação de Medicamentos , Engenharia Genética , Humanos , Neoplasias/terapia , Medicina de PrecisãoRESUMO
Cancer is the second leading cause of death globally. Abnormity in gene expression regulation characterizes the trajectory of tumor development and progression. RNA-binding proteins (RBPs) are widely dysregulated, and thus implicated, in numerous human cancers. RBPs mainly regulate gene expression post-transcriptionally, but emerging studies suggest that many RBPs can impact transcription by acting on chromatin as transcription factors (TFs) or cofactors. Here, we review the evidence that RBM38, an intensively studied RBP, frequently plays a tumor-suppressive role in multiple human cancer types. Genetic studies in mice deficient in RBM38 on different p53 status also establish RBM38 as a tumor suppressor (TS). By uncovering a spectrum of transcripts bound by RBM38, we discuss the diversity in its mechanisms of action in distinct biological contexts. Examination of the genomic features and expression pattern of RBM38 in human tissues reveals that it is generally lost but rarely mutated, in cancers. By assessing future trends in the study of RBM38 in cancer, we signify the possibility of targeting RBM38 and its related pathways as therapeutic strategies against cancer.
Assuntos
Neoplasias/patologia , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Alternative splicing (AS) analysis across the entire spectrum of human prostate cancer evolution reveals the unexpected findings that intron retention is a hallmark of stemness and tumor aggressiveness, and androgen receptor controls a splicing program distinct from its transcriptional regulation. Importantly, twisted activity of the spliceosome causing abnormal AS landscape represents a therapeutic vulnerability in aggressive prostate cancer.
RESUMO
The role of dysregulation of mRNA alternative splicing (AS) in the development and progression of solid tumors remains to be defined. Here we describe the first comprehensive AS landscape in the spectrum of human prostate cancer (PCa) evolution. We find that the severity of splicing dysregulation correlates with disease progression and establish intron retention as a hallmark of PCa stemness and aggressiveness. Systematic interrogation of 274 splicing-regulatory genes (SRGs) uncovers prevalent genomic copy number variations (CNVs), leading to mis-expression of ~68% of SRGs during PCa development and progression. Consequently, many SRGs are prognostic. Surprisingly, androgen receptor controls a splicing program distinct from its transcriptional regulation. The spliceosome modulator, E7107, reverses cancer aggressiveness and inhibits castration-resistant PCa (CRPC) in xenograft and autochthonous PCa models. Altogether, our studies establish aberrant AS landscape caused by dysregulated SRGs as a hallmark of PCa aggressiveness and the spliceosome as a therapeutic vulnerability for CRPC.
Assuntos
Íntrons/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Spliceossomos/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estudos de Coortes , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Compostos de Epóxi/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Macrolídeos/farmacologia , Masculino , Camundongos , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Transcrição Gênica/efeitos dos fármacosRESUMO
Prostate cancer (PCa) has a predominantly luminal phenotype. Basal cells were previously identified as a cell of origin for PCa, but increasing evidence implicates luminal cells as a preferred cell of origin for PCa, as well as key drivers of tumor development and progression. Prostate luminal cells are understudied compared with basal cells. In this review, we describe the contribution of prostate luminal progenitor (LP) cells to luminal cell development and their role in prostate development, androgen-mediated regeneration of castrated prostate, and tumorigenesis. We also discuss the potential value of LP transcriptomics to identify new targets and therapies to treat aggressive PCa. Finally, we propose future research directions focusing on molecular mechanisms underlying LP cell biology and heterogeneity in normal and diseased prostate.
Assuntos
Carcinogênese , Próstata/citologia , Neoplasias da Próstata , Células-Tronco , Animais , Humanos , Masculino , Próstata/crescimento & desenvolvimentoRESUMO
Expression of androgen receptor (AR) in prostate cancer (PCa) is heterogeneous but the functional significance of AR heterogeneity remains unclear. Screening ~200 castration-resistant PCa (CRPC) cores and whole-mount sections (from 89 patients) reveals 3 AR expression patterns: nuclear (nuc-AR), mixed nuclear/cytoplasmic (nuc/cyto-AR), and low/no expression (AR-/lo). Xenograft modeling demonstrates that AR+ CRPC is enzalutamide-sensitive but AR-/lo CRPC is resistant. Genome editing-derived AR+ and AR-knockout LNCaP cell clones exhibit distinct biological and tumorigenic properties and contrasting responses to enzalutamide. RNA-Seq and biochemical analyses, coupled with experimental combinatorial therapy, identify BCL-2 as a critical therapeutic target and provide proof-of-concept therapeutic regimens for both AR+/hi and AR-/lo CRPC. Our study links AR expression heterogeneity to distinct castration/enzalutamide responses and has important implications in understanding the cellular basis of prostate tumor responses to AR-targeting therapies and in facilitating development of novel therapeutics to target AR-/lo PCa cells/clones.
Assuntos
Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Terapia de Alvo Molecular , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.