Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(7): e2306704, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072665

RESUMO

The pathogenesis of Diabetic kidney disease(DKD) involves pathological changes in both tubulo-interstitium and the glomerulus. Surprisingly, tubulo-interstitial fibrosis (TIF), does not develop significantly until the late stage of DKD. Here, it is demonstrated that PR domain-containing 16 (PRDM16) is a key to the low level of TIF in DKD. In the experiments, PRDM16 is upregulated in high glucose-treated renal tubular cells, DKD mouse kidneys, and renal biopsy of human DKD patients via activation of NF-κB signal pathway. High glucose-induced expression of fibrotic proteins in renal tubular cells is suppressed by PRDM16. Mechanistically, PRDM16 bound to the promotor region of Transient receptor potential ankyrin 1 (TRPA1) to transactivate its expression and then suppressed MAPK (P38, ERK1/2) activation and downstream expression of TGF-ß1. Knockout of PRDM16 from kidney proximal tubules in mice blocked TRPA1 expression and enhanced MAPK activation, TGF-ß1 production, TIF development, and DKD progression, whereas knock-in of PRDM16 has opposite effects. In addition, overexpression of PRDM16 or its induction by formononetin ameliorated renal dysfunction and fibrosis in db/db diabetic mice. Finally, the above finding are detected in renal biopsies of DKD patients. Together, these results unveil PRDM16/TRPA1 as the mechanism responsible for the low level of TIF in the early stage of DKD by suppressing and TGF-ß1 expression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteínas de Ligação a DNA/metabolismo , Fibrose , Glucose , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Canal de Cátion TRPA1
2.
Life Sci ; 333: 122148, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805166

RESUMO

AIMS: To investigate the role and mechanisms of methyltransferase-like 3 (METTL3) in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MAIN METHODS: LPS intratracheally instillation was applied in alveolar epithelial cell METTL3 conditional knockout (METTL3-CKO) mice and their wild-type littermates. In addition, METTL3 inhibitor STM2457 was used. LPS treatment on mouse lung epithelial 12 (MLE-12) cell was applied to establish an in vitro model of LPS-induced ALI. H&E staining, lung wet-to-dry ratio, and total broncho-alveolar lavage fluid (BALF) concentrations were used to evaluate lung injury. Overall, the m6A level was determined with the m6A RNA Methylation Quantification Kit and dot blot assay. Expression of METTL3 and neprilysin were measured with immunohistochemistry, immunofluorescence, immunofluorescence-fluorescence in situ hybridization, and western blot. Apoptosis was detected with TUNEL, western blot, and flow cytometry. The interaction of METTL3 and neprilysin was determined with RIP-qPCR and MeRIP. KEY FINDINGS: METTL3 expression and apoptosis were increased in alveolar epithelial cells of mice treated with LPS, and METTL3-CKO or METTL3 inhibitor STM2457 could alleviate apoptosis and LPS-induced ALI. In MLE-12 cells, LPS-Induced METTL3 expression and apoptosis. Knockdown of METTL3 alleviated, while overexpression of METTL3 exacerbated LPS-induced apoptosis. LPS treatment reduced neprilysin expression, the intervention of neprilysin expression negatively regulated apoptosis without affecting METTL3 expression, and mitigated the promoting effect of METTL3 on LPS-induced apoptosis. Additionally, METTL3 could bind to the mRNA of neprilysin, and reduce its expression. SIGNIFICANCE: Our findings revealed that inhibition of METTL3 could exert anti-apoptosis and ALI-protective effects via restoring neprilysin expression.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Apoptose , Hibridização in Situ Fluorescente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Neprilisina
3.
Life Sci ; 320: 121540, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907324

RESUMO

Our previous studies reported that low-dose paclitaxel (Taxol) ameliorated renal fibrosis in the unilateral ureteral obstruction and remnant kidney models. However, the regulatory role of Taxol in diabetic kidney disease (DKD) is still unclear. Herein, we observed that low-dose Taxol attenuated high glucose-increased expression of fibronectin, collagen I and collagen IV in Boston University mouse proximal tubule cells. Mechanistically, Taxol suppressed the expression of homeodomain-interacting protein kinase 2 (HIPK2) via disrupting the binding of Smad3 to HIPK2 promoter region, and consequently inhibited the activation of p53. Besides, Taxol ameliorated RF in Streptozotocin mice and db/db-induced DKD via suppression of Smad3/HIPK2 axis as well as inactivation of p53. Altogether, these results suggest that Taxol can block Smad3-HIPK2/p53 axis, thereby attenuating the progression of DKD. Hence, Taxol is a promising therapeutic drug for DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Paclitaxel/farmacologia , Regulação para Baixo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Rim/metabolismo , Fibrose , Colágeno/metabolismo , Diabetes Mellitus/patologia , Proteínas Serina-Treonina Quinases/metabolismo
4.
Sci Rep ; 13(1): 1035, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658236

RESUMO

Smoking is a trigger for asthma, which has led to an increase in asthma incidence in China. In smokers, asthma management starts with smoking cessation. Data on predictors of smoking cessation in Chinese patients with asthma are scarce. The objective of this study was to find the differences in clinical characteristics between current smokers and former smokers with asthma in order to identify factors associated with smoking cessation. Eligible adults with diagnosed asthma and smoking from the hospital outpatient clinics (n = 2312) were enrolled and underwent a clinical evaluation, asthma control test (ACT), and pulmonary function test. Information on demographic and sociological data, lung function, laboratory tests, ACT and asthma control questionnaire (ACQ) scores was recorded. Patients were divided into a current smokers group and a former smokers group based on whether they had quit smoking. Logistic regression analysis was used to analyze the factors associated with smoking cessation. Of all patients with asthma, 34.6% were smokers and 65.4% were former smokers, and the mean age was 54.5 ± 11.5 years. Compared with current smokers, the former smokers were older, had longer duration of asthma, had higher ICS dose, had more partially controlled and uncontrolled asthma, had more pack-years, had smoked for longer, and had worse asthma control. The logistic regression model showed that smoking cessation was positively correlated with age, female sex, pack-years, years of smoking, partially controlled asthma, uncontrolled asthma, and body mass index (BMI), but was negatively correlated with ACT, FEV1, FEV1%predicted, and widowed status. More than 30% of asthma patients in the study were still smoking. Among those who quit smoking, many quit late, often not realizing they need to quit until they have significant breathing difficulties. The related factors of smoking cessation identified in this study indicate that there are still differences between continuing smokers and former smokers, and these factors should be focused on in asthma smoking cessation interventions to improve the prognosis of patients with asthma.


Assuntos
Asma , Abandono do Hábito de Fumar , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Asma/epidemiologia , Estudos Transversais , Fumantes , Fumar/efeitos adversos , Fumar/epidemiologia , Masculino
5.
Cells ; 11(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497007

RESUMO

Background: Numerous studies have suggested that long non-coding RNA (lncRNA) affects the progression of ischemic acute kidney injury (IAKI). However, little information is currently available concerning the mechanisms of lncRNA171502 involved in IAKI. Methods: We applied an RT-qPCR assay for the expression of lncRNA171502 and miRNA-130b-3p, immunoblotting for the detection of Mybl-1-myeloblastosis oncogene-like 1 (Mybl-1) and cleaved caspase-3 (CC3) expression, and flow cytometry (FCM) for the evaluation of apoptosis. Result: Initially, lncRNA171502 was induced by HIF-1α in the mouse proximal tubular (BUMPT) cell line and C57BL/6J mice during ischemic injury. Secondly, ischemic injury-induced BUMPT cell apoptosis was markedly relieved following the overexpression of lncRNA171502. However, this effect was enhanced by the knockdown of lncRNA171502. Mechanistically, lncRNA171502 could sponge miRNA-130b-3p and would subsequently upregulate the expression of Mybl-1 to drive the apoptotic process. Lastly, the overexpression of lncRNA171502 alleviated the development of IAKI by targeting miRNA-130b-3p/Mybl-1 pathways. Conclusions: In summary, the HIF-1α/lncRNA171502/miRNA-130b-3p/Mybl-1 axis prevented the progression of IAKI and might serve as a potential therapeutic target.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Injúria Renal Aguda/genética , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , RNA Longo não Codificante/genética , Proteínas Proto-Oncogênicas c-myb , Transativadores
6.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552750

RESUMO

Although recent studies have reported that long non-coding RNA (lncRNA) is involved in the development of ischemic acute kidney injury (AKI), the exact function and regulatory mechanism of lncRNAs in ischemic AKI remain largely unknown. Herein, we found that ischemic injury promoted the expression of lncRNA 148400 in mouse proximal tubule-derived cell line (BUMPT) and C57BL/6J mice. Furthermore, the lncRNA148400 mediates ischemic injury-induced apoptosis of BUMPT cells. Mechanistically, lncRNA 148400 sponged miR-10b-3p to promote apoptosis via GRK4 upregulation. Finally, knockdown of lncRNA 148400 alleviated the I/R-induced deterioration of renal function, renal tubular injury, and cell apoptosis. In addition, cleaved caspase-3 is increased via targeting the miR-10b-3p/GRK4 axis. Collectively, these results showed that lncRNA 148400/miR-10b-3p/GRK4 axis mediated the development of ischemic AKI.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Túbulos Renais Proximais , RNA Longo não Codificante , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Apoptose/genética , Apoptose/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Túbulos Renais Proximais/irrigação sanguínea , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Isquemia/genética , Isquemia/metabolismo
7.
Life Sci ; 309: 121050, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209831

RESUMO

AIMS: Rhabdomyolysis is a life-threatening condition. One of the most common complications of rhabdomyolysis is acute kidney injury (AKI), and 10 % of all AKI patients present with rhabdomyolysis. EGFR is associated with different types of AKI. However, the function and regulatory mechanism of EGFR in rhabdomyolysis-induced AKI model remain unknown. Here, we performed the experiments to explore the role of EGFR in this model. MAIN METHODS: We used proximal tubule-specific Atg7 knockout mice and Wa-2 mice to establish animal models. Then, the samples were collected for pathology assay and IB detection. In vitro, the BUMPT cells treated with myoglobin were collected for the detection of apoptosis and autophagy. IB detection were processed for the analysis of protein expressions, FCM analysis for the cell apoptosis, GFP-LC3 transfection and immunofluorescent for autophagy. KEY FINDINGS: EGFR promotes autophagy to mediate rhabdomyolysis-induced AKI via STAT3/Atg7 axis, and gefitinib is a potential therapeutic option for AKI. Here, we demonstrated that EGFR was activated by myoglobin and glycerol both in vitro and in vivo, respectively. Genetic or pharmacological inhibition of EGFR ameliorated myoglobin and glycerol-induced renal cell apoptosis. Mechanistically, EGFR mediated autophagy induction via STAT3/Atg7 axis, thereby resulting in kidney cell apoptosis. Furthermore, Wa-2 mice or gefitinib treatment prevented the progression of rhabdomyolysis-induced AKI as well as renal cell apoptosis and autophagy via inhibiting STAT3/Atg7 axis. SIGNIFICANCE: Researchers can use this finding to better study the function and regulatory mechanism of EGFR in RM-induced AKI model. And gefitinib represents a potential target for treatment of AKI.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Camundongos , Animais , Mioglobina/metabolismo , Regulação para Cima , Gefitinibe , Glicerol/efeitos adversos , Rabdomiólise/complicações , Rim/metabolismo , Injúria Renal Aguda/patologia , Apoptose/fisiologia , Autofagia , Receptores ErbB/metabolismo
8.
Oxid Med Cell Longev ; 2022: 3096528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062195

RESUMO

T helper 17 (Th17) cells subtype of non-T2 asthma is less responsive (resistant) to inhaled corticosteroids (ICS), so also called severe asthma. Methyl-CpG-binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, showing the possibility of a therapeutic target in severe asthma. Androgen tends to show beneficial therapeutic effects and is a "hot research topic," but its role in the differentiation and expression of Th17 cells via MBD2 is still unknown. The aim of this study was to evaluate how sex hormone interacts with MBD2 and affects the differentiation and expression of Th17 cells in severe asthma. Here, first, we measured the concentration of androgen, estrogen, and androgen estrogen ratio from subjects and correlated it with severe asthma status. Then, we established an animal model and bronchial epithelial cells (BECs) model of severe asthma to evaluate the role of MBD2 in the differentiation and expression of Th17 cells (IL-17), the therapeutic potential of sex hormones in severe asthma, and the effect of sex hormones in BECs regulated Th17 cells differentiation via MBD2 at the cellular level. Increased MBD2 expression and Th17 cells differentiation were noted in the animal and the BECs severe asthma models. Th17 cell differentiation and expression were MBD2 dependent. Androgen attenuated the differentiation of BECs regulated Th17 cells via MBD2 showing BECs as a therapeutic target of androgen, and these findings postulate the novel role of androgen in Th17 cells predominant neutrophilic severe asthma therapy through targeting MBD2.


Assuntos
Asma , Células Th17 , Androgênios/farmacologia , Animais , Asma/tratamento farmacológico , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Epiteliais , Estrogênios , Humanos
9.
Life Sci ; 308: 120921, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057400

RESUMO

AIMS: Although previous studies reported that miRNAs are involved in the progression of acute kidney injury (AKI), their exact function and mechanism in ischemic AKI remains largely unknown. This study aims to define the role of miR-6918-5p in ischemia-reperfusion AKI. Materials and methods The renal arteries of C57BL/6J mice were clamped to establish a model of ischemia-reperfusion renal injury. BUMPT cells were added with Antimycin A and calcium ionophore to establish a model of ATP depletion in vitro. Cell apoptosis was detected by CCK8, flow cytometry and western blot, while HE staining and TUNEL staining were used to assess the degree of kidney damage. KEY FINDINGS: We suppressed mmu_miR-6918-5p by ischemic injury in vitro and in vivo. We found that ischemia-reperfusion (I/R)-induced renal tubular cell apoptosis and the expression of cleaved caspase3 were enhanced by the inhibitor of mmu_miR-6918-5p; this effect was attenuated by an mmu_miR-6918-5p mimic. Mechanistically, mmu_miR-6918-5p binds to the 3' UTR region of MBD2 and represses its expression. The mmu_miR-6918-5p mimic alleviated the ischemic AKI by targeting MBD2. Conversely, the inhibitor of mmu_miR-6918-5p enhanced the ischemic AKI; this was diminished by MBD2-KO. SIGNIFICANCE: Mmu_miR-6918-5p protected against the development of ischemic AKI by targeting MBD2.


Assuntos
Injúria Renal Aguda , MicroRNAs , Traumatismo por Reperfusão , Regiões 3' não Traduzidas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Trifosfato de Adenosina , Animais , Antimicina A/efeitos adversos , Apoptose/genética , Ionóforos de Cálcio , Linhagem Celular , Proteínas de Ligação a DNA , Isquemia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
10.
FASEB J ; 36(7): e22395, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695811

RESUMO

Several studies have reported that long non-coding RNAs (LncRNAs) were associated with the progression of acute kidney injury (AKI). However, the role and regulation mechanism of lncRNA122049 in ischemic AKI remains unknown. In the present study, we found that lncRNA 122049 protected against the ischemia/reperfusion (I/R) induced apoptosis in BUMPT cells. Mechanistically, the lncRNA 122049 directly sponged miR-330-5p, then increased the expression of ELK1(ETS transcription factor ELK1) to decrease renal cell apoptosis. In addition, miR-330-5p inhibitor completely reversed the pro-apoptotic effect of LncRNA 122049 siRNA on I/R-induced BUMPT cells apoptosis. Finally, overexpression of lncRNA 122049 attenuated ischemic mice AKI via targeting of the miR-330-5p/ELK1 axis. Collectively, the data demonstrated that LncRNA 122049 prevented the I/R-induced renal cell apoptosis via regulation of the miR-330-5p/ELK1 axis, which brings new insights into the pathogenesis and potential targeted treatment of ischemic AKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose/genética , Células Epiteliais/metabolismo , Isquemia , Camundongos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo
11.
Aging (Albany NY) ; 14(8): 3666-3686, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482482

RESUMO

The pathogenesis of acute kidney injury (AKI) is not fully understood. To date, the exact role and regulatory mechanism of long non-coding RNA (lncRNA)136131 in AKI remains unclear. Here, we demonstrate that lncRNA136131 in BUMPT cells is induced by antimycin A. Furthermore, after incubating BUMPT cells in antimycin for two hours, lncRNA136131 prevented BUMPT cell apoptosis and cleaved caspase-3 expression. Mechanistically, lncRNA136131 sponged miR-378a-3p and then increased the expression of Rab10 to suppress apoptosis. Finally, I/R-induced decline of renal function, tubular damage, renal tubular cells apoptosis, and the upregulation of cleaved caspase-3 were aggravated by lncRNA136131 siRNA. In contrast, this effect was attenuated by the overexpression of lncRNA136131. In conclusion, lncRNA136131 protected against I/R-induced AKI progression by targeting miR-378a-3p/Rab10 and may be utilized as a novel target for AKI therapeutics.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Injúria Renal Aguda/patologia , Apoptose/genética , Caspase 3/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas rab de Ligação ao GTP
12.
Cell Death Dis ; 13(2): 125, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136032

RESUMO

Recent studies reported that Methyl-CpG-binding domain protein 2 (MBD2) promoted M2 macrophages accumulation to increase bleomycin-induced pulmonary fibrosis. However, the role and mechanism of action of MBD2 in macrophages differentiation and renal fibrosis remain largely unknown. In the current study, MBD2 not only promoted the differentiation of resting M0 macrophages to polarized M2 macrophages, but also induced them to polarized M1 macrophages and the transition of M2 to M1 macrophages. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of G0S2 genes, and then activated their expression by inducing hypomethylation of the promoter region. Interestingly, the data demonstrated that the role of G0S2 in macrophages differentiation is consistent with MBD2. Furthermore, Co-culture of activated M1 macrophages and murine embryonic NIH 3T3 fibroblasts indicated that MBD2 mediated the M1-induction of ECM production by embryonic NIH 3T3 fibroblasts via promotion of G0S2. In addition, we also found that inhibition of MBD2 suppressed LPS induced the expression of p53 as well as activation and expression of stat3 in RAW264.7 macrophages. In vivo, MBD2 LysMcre attenuated unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R)-induced renal fibrosis via downregulation of G0S2, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, G0S2. These data collectively demonstrated that MBD2 in macrophages contributed to UUO and I/R-induced renal fibrosis through the upregulation of G0S2, which could be a target for treatment for chronic kidney disease.


Assuntos
Macrófagos , Obstrução Ureteral , Animais , Ilhas de CpG/genética , Metilação de DNA/genética , Fibrose , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/patologia
13.
Aging (Albany NY) ; 13(9): 12780-12799, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33973871

RESUMO

In this study, we investigated the role of circular RNA_30032 (circRNA_30032) in renal fibrosis and the underlying mechanisms. The study was carried out using TGF-ß1-induced BUMPT cells and unilateral ureteral obstruction (UUO)-induced mice, respectively, as in vitro and in vivo models. CircRNA_30032 expression was significantly increased by 9.15- and 16.6-fold on days 3 and 7, respectively, in the renal tissues of UUO model mice. In TGF-ß1-treated BUMPT cells, circRNA_30032 expression was induced by activation of the p38 mitogen-activated protein kinase signaling pathway. Quantitative real-time PCR, western blotting and dual luciferase reporter assays showed that circRNA_30032 mediated TGF-ß1-induced and UUO-induced renal fibrosis by sponging miR-96-5p and increasing the expression of profibrotic proteins, including HBEGF, KRAS, collagen I, collagen III and fibronectin. CircRNA_30032 silencing significantly reduced renal fibrosis in UUO model mice by increasing miR-96-5p levels and decreasing levels of HBEGF and KRAS. These results demonstrate that circRNA_30032 promotes renal fibrosis via the miR-96-5p/HBEGF/KRAS axis and suggest that circRNA_30032 is a potential therapeutic target for treatment of renal fibrosis.


Assuntos
Rim/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Obstrução Ureteral/complicações , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais , Fibrose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Rim/citologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Circular/genética , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Risk Manag Healthc Policy ; 14: 323-330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33536801

RESUMO

BACKGROUND: The management of acute aortic dissection (AAD) has improved; however, the outcomes related to different gender with short-term outcomes in non-surgically managed AAD with hypertension are still limited. Our objective was to explore gender-differences in association with short-term outcomes of patients comorbid with hypertension in non-surgically managed AAD. METHODS: This is an observational retrospective single-center cohort. We analyzed the data from the Second Xiangya Hospital of Central South University (2014-2018). The data on demographics, clinical presentation, chronic comorbidities, laboratory testing, imaging studies, and treatment were analyzed for all patients. Univariate and multiple analyses were used to test gender-difference associated with short-term outcomes of patients with hypertension in non-surgically managed AAD. RESULTS: In total, 288 patients were enrolled in this study, of whom 238 (82.63%) were male and 50 (17.37%) were females. About 74% of female patients were dead in-hospital, which was more than male patients (56.3%). Female patients with diabetes mellitus were more than male patients (14% vs 2.94%), while male patients with smoking were significant higher than female patients (36.55% vs 8%). In the full model (model 3), after adjusting for confounding variables, the female AAD patients were more likely to have worse short-term outcomes (OR=3.60, 95% CI=1.41 to 9.60). CONCLUSION: Female patients were more likely to have worse outcomes in non-surgically managed AAD patients with hypertension. Large numbers of investigations are required to further explore this relationship.

15.
Nat Commun ; 11(1): 4467, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948751

RESUMO

Recent studies have reported that upregulation of disulfide-bond A oxidoreductase-like protein (DsbA-L) prevented lipid-induced renal injury in diabetic nephropathy (DN). However, the role and regulation of proximal tubular DsbA-L for renal tubulointerstitial fibrosis (TIF) remains unclear. In current study, we found that a proximal tubules-specific DsbA-L knockout mouse (PT-DsbA-L-KO) attenuated UUO-induced TIF, renal cell apoptosis and inflammation. Mechanistically, the DsbA-L interacted with Hsp90 in mitochondria of BUMPT cells which activated the signaling of Smad3 and p53 to produce connective tissue growth factor (CTGF) and then resulted in accumulation of ECM of BUMPT cells and mouse kidney fibroblasts. In addition, the progression of TIF caused by UUO, ischemic/reperfusion (I/R), aristolochic acid, and repeated acute low-dose cisplatin was also alleviated in PT-DsbA-L-KO mice via the activation of Hsp90 /Smad3 and p53/CTGF axis. Finally, the above molecular changes were verified in the kidney biopsies from patients with obstructive nephropathy (Ob). Together, these results suggest that DsbA-L in proximal tubular cells promotes TIF via activation of the Hsp90 /Smad3 and p53/CTGF axis.


Assuntos
Fibrose/genética , Predisposição Genética para Doença/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Nefropatias/genética , Idoso , Animais , Apoptose , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Inflamação , Rim/lesões , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
J Clin Invest ; 130(9): 5011-5026, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32804155

RESUMO

Dysregulation of autophagy in diabetic kidney disease (DKD) has been reported, but the underlying mechanism and its pathogenic role remain elusive. We show that autophagy was inhibited in DKD models and in human diabetic kidneys. Ablation of autophagy-related gene 7 (Atg7) from kidney proximal tubules led to autophagy deficiency and worse renal hypertrophy, tubular damage, inflammation, fibrosis, and albuminuria in diabetic mice, indicating a protective role of autophagy in DKD. Autophagy impairment in DKD was associated with the downregulation of unc-51-like autophagy-activating kinase 1 (ULK1), which was mediated by the upregulation of microRNA-214 (miR-214) in diabetic kidney cells and tissues. Ablation of miR-214 from kidney proximal tubules prevented a decrease in ULK1 expression and autophagy impairment in diabetic kidneys, resulting in less renal hypertrophy and albuminuria. Furthermore, blockade of p53 attenuated miR-214 induction in DKD, leading to higher levels of ULK1 and autophagy, accompanied by an amelioration of DKD. Compared with nondiabetic samples, renal biopsies from patients with diabetes showed induction of p53 and miR-214, associated with downregulation of ULK1 and autophagy. We found a positive correlation between p53/miR-214 and renal fibrosis, but a negative correlation between ULK1/LC3 and renal fibrosis in patients with diabetes. Together, these results identify the p53/miR-214/ULK1 axis in autophagy impairment in diabetic kidneys, pinpointing possible therapeutic targets for DKD.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Fibrose , Humanos , Túbulos Renais Proximais/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética
17.
Mol Ther Nucleic Acids ; 19: 1027-1042, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32059335

RESUMO

The prediction of mortality for septic acute kidney injury (AKI) has been assessed by a number of potential biomarkers, including long noncoding RNAs (lncRNAs). However, the validation of lncRNAs as biomarkers, particularly for the early stages of septic AKI, is still warranted. Our results indicate that the lncRNA TCONS_00016233 is upregulated in plasma of sepsis-associated non-AKI and AKI patients, but a higher cutoff threshold (9.5 × 105, copy number) provided a sensitivity of 71.9% and specificity of 89.6% for the detection of AKI. The plasma TCONS_00016233 was highly correlated with serum creatinine, tissue inhibitor metalloproteinase-2 (TIMP-2), insulin-like growth factor binding protein-7 (IGFBP7), interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), C-reactive protein (CRP), and urinary TCONS_00016233. Lipopolysaccharide (LPS) induced the expression of lncRNA TCONS_00016233 via the Toll-like receptor 4 (TLR4)/p38 mitogen-activated protein kinase (MAPK) signal pathway in human renal tubular epithelial (HK-2) cells. Furthermore, TCONS_00016233 mediates the LPS-induced HK-2 cell apoptosis and the expression of IL-1ß and TNF-α. Mechanistically, TCONS_00016233 acts as a competing endogenous RNA (ceRNA) to prevent microRNA (miR)-22-3p-mediated downregulation of the apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Finally, overexpression of TCONS_00016233 is capable of aggravating the LPS- and cecal ligation and puncture (CLP)-induced septic AKI by targeting the miR-22-3p/AIFM1 axis. Taken together, our data indicate that TCONS_00016233 may serve as an early diagnosis marker for the septic AKI, possibly acting as a novel therapeutic target for septic AKI.

18.
Theranostics ; 9(9): 2712-2726, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131063

RESUMO

The molecular mechanism underlying the transition of acute kidney injury (AKI) to chronic kidney disease (CKD) induced by vancomycin (VAN) remains largely unknown. Methods: The mice model of VAN drives AKI to CKD was developed to investigate the role and molecular mechanism of epidermal growth factor receptor (EGFR). The EGF receptor mutant (Wa-2) mice and gefitinib were used to inactivation of EGFR. The homeodomain interacting protein kinase 2 (HIPK2) siRNA was applied to silence of HIPK2. Human proximal tubular epithelial cells (HK-2) were used to explore the molecular regulation methanism of EGFR. ChIp analysis was used to investigate if STAT3 interaction with the promoter of HIPK2. Results: A novel VAN-induced AKI mouse model was established for the first time. Moreover, the expression levels collagen I&IV, α-SMA, p-EGFR and the expression of HIPK2 proteins were upregulated in this model. Interestingly, AKI caused by VAN was markedly attenuated in waved-2 mice at the early stage, as evidenced by the suppression of renal dysfunction, renal cell apoptosis and caspase3 activation. In the latter stage, renal fibrosis and inflammation were significantly ameliorated in Wa-2 mice, accompanied by the downregulation of profibrotic molecules and F4/80. Besides, the expression levels of HIPK2 and p-STAT3 were suppressed in Wa-2 mice during VAN-induced transition of AKI to CKD. In addition, renal fibrosis and inflammation, profibrotic molecules, and EGFR/STAT3/HIPK2 signaling were ameliorated by gefitinib treatment after VAN-induced AKI. These results were consistent with the findings of Wa-2 mice. EGFR/STAT3 signaling mediated VAN-induced HIPK2 expression in HK-2 cells. ChIp analysis revealed that STAT3 directly bound to the promoter region of HIPK2. Finally, inhibition of HIPK2 attenuated the VAN drove the progression of AKI to CKD. Conclusion: These data suggest that EGFR plays an important role in VAN-driven progression of AKI to CKD.


Assuntos
Injúria Renal Aguda/genética , Receptores ErbB/genética , Rim/metabolismo , Proteínas Serina-Treonina Quinases/genética , Insuficiência Renal Crônica/genética , Fator de Transcrição STAT3/genética , Actinas/genética , Actinas/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Regulação da Expressão Gênica , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Vancomicina/administração & dosagem
19.
Biosci Rep ; 39(2)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30541898

RESUMO

To determine whether or not house dust mite (HDM) and HDM+lipopolysaccharide (LPS) exposure causes a difference in T-cell subsets from young and old mice. The bronchial epithelial cells (BECs) from young and old mice were divided into three groups (PBS (control), HDM, and HDM+LPS). CD4+ naive T cells from the spleen and lymph nodes were collected after 24 h of co-culture with BECs. The number of Th2 and Th17 cells was elevated in the HDM and HDM+LPS groups compared with the control group; these responses were exacerbated when exposed to HDM+LPS. The number of HDM- and HDM+LPS-specific Th2/Th17 cells in young mice was higher than old mice; however, the Th2:Th17 cell ratio was greater in young mice, whereas the Th17:Th2 cell ratio was greater in old mice. The expression of GATA-3 and RORc was increased in the HDM+LPS and HDM groups compared with the PBS group and exhibited most in HDM+LPS group. The expression of HDM+LPS-specific GATA-3 in young mice was higher, while the expression of HDM+LPS-specific RORc in old mice was higher. Murine BECs directly regulated CD4+ naive T-cell differentiation under allergen exposure.


Assuntos
Asma/patologia , Brônquios/citologia , Células Th17/citologia , Células Th2/citologia , Fatores Etários , Animais , Asma/imunologia , Linfócitos T CD4-Positivos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator de Transcrição GATA3/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pyroglyphidae , Células Th17/imunologia , Células Th2/imunologia
20.
Cell Death Dis ; 9(11): 1113, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385753

RESUMO

Cisplatin is a widely used chemotherapeutic drug with notorious toxicity in the kidneys, which involves mitochondrial dysfunction and damage in renal tubular cells. Mitophagy is a form of selective autophagy that removes damaged or dysfunctional mitochondria to maintain cellular homeostasis. In this study, we have used mouse and cell models to examine the role and regulation of mitophagy in cisplatin nephrotoxicity. Cisplatin treatment was associated with the activation of autophagy and mitophagy. Rapamycin, a pharmacological inhibitor of mTOR, stimulated autophagy and mitophagy, and alleviated the development of cisplatin nephrotoxicity. PINK1 and Parkin were increased in kidney tissues during cisplatin treatment of mice. In PINK1 or Parkin gene knockout mouse models, both basal and cisplatin-induced mitophagy in kidneys were defective. Compared with wild-type littermates, PINK1 and Parkin knockout mice showed more severe renal functional loss, tissue damage, and apoptosis during cisplatin treatment. The results suggest that PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity and has a protective role against kidney injury.


Assuntos
Injúria Renal Aguda/genética , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Mitofagia/efeitos dos fármacos , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Antineoplásicos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Regulação da Expressão Gênica , Testes de Função Renal , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA