Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(4): 112340, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027301

RESUMO

Pancreatic progenitor cell differentiation and proliferation factor (PPDPF) has been reported to play a role in tumorigenesis. However, its function in hepatocellular carcinoma (HCC) remains poorly understood. In this study, we report that PPDPF is significantly downregulated in HCC and the decreased PPDPF expression indicates poor prognosis. In the dimethylnitrosamine (DEN)-induced HCC mouse model, hepatocyte-specific depletion of Ppdpf promotes hepatocarcinogenesis, and reintroduction of PPDPF into liver-specific Ppdpf knockout (LKO) mice inhibits the accelerated HCC development. Mechanistic study shows that PPDPF regulates nuclear factor κB (NF-κB) signaling through modulation of RIPK1 ubiquitination. PPDPF interacts with RIPK1 and facilitates K63-linked ubiquitination of RIPK1 via recruiting the E3 ligase TRIM21, which catalyzes K63-linked ubiquitination of RIPK1 at K140. In addition, liver-specific overexpression of PPDPF activates NF-κB signaling and attenuates apoptosis and compensatory proliferation in mice, which significantly suppresses HCC development. This work identifies PPDPF as a regulator of NF-κB signaling and provides a potential therapeutic candidate for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ubiquitinação
3.
Adv Sci (Weinh) ; 10(2): e2202448, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453576

RESUMO

The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína SOS1 , Neoplasias Pancreáticas
4.
Oncogene ; 41(36): 4244-4256, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35906391

RESUMO

Lung cancer is the most common malignancy and the leading cause of cancer death worldwide, and lung adenocarcinoma (LUAD) is the most prevalent subtype. Considering the emergence of resistance to therapies, it is urgent to develop more effective therapies to improve the prognosis. Here we reported that pancreatic progenitor cell differentiation and proliferation factor (PPDPF) deficiency inhibited LUAD development both in vitro and in vivo. Mechanistically, PPDPF induces hyperactive STAT3 by interfering STAT3-PTPN1 interaction. Activated STAT3 promoted BMPR2 transcription, which further inhibited apoptosis. Moreover, PPDPF reduced NK cell infiltration and activation to develop an immunosuppressive microenvironment, which was also mediated by STAT3. Furthermore, we identified that the expression of PPDPF was positively correlated with the malignant features of LUAD, as well as BMPR2 and p-STAT3 level in clinical samples. Therefore, our study suggests that PPDPF positively regulates BMPR2 expression and facilitates immune escape via regulating STAT3 activity, providing a potential therapy target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/patologia , Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral
5.
Cell Mol Gastroenterol Hepatol ; 14(1): 101-127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390516

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor with high morbidity and mortality. AT-rich interaction domain 1A (ARID1A) accounts for up to 10% of mutations in liver cancer, however, its role in HCC remains controversial, and no targeted therapy has been established. METHODS: The expression of ARID1A in clinical samples was examined by Western blot and immunohistochemical staining. ARID1A was knocked out by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) in HCC cell lines, and the effects of glucose deprivation on cell viability, proliferation, and apoptosis were measured. Mass spectrometry analysis was used to find ARID1A-interacting proteins, and the result was verified by co-immunoprecipitation and Glutathione S Transferase (GST) pull-down. The regulation of ARID1A target gene USP9X was investigated by chromatin immunoprecipitation, Glutathione S Transferase (GST) pull-down, luciferase reporter assay, and so forth. Finally, drug treatments were performed to explore the therapeutic potential of the agents targeting ARID1A-deficient HCC in vitro and in vivo. RESULTS: Our study has shown that ARID1A loss protected cells from glucose deprivation-induced cell death. A mechanism study disclosed that AIRD1A recruited histone deacetylase 1 via its C-terminal region DUF3518 to the promoter of USP9X, resulting in down-regulation of USP9X and its target protein kinase AMP-activated catalytic subunit α2 (PRKAA2). ARID1A knockout and a 1989∗ truncation mutant in HCC abolished this effect, increased the levels of H3K9 and H3K27 acetylation at the USP9X promoter, and up-regulated the expression of USP9X and protein kinase AMP-activated catalytic subunit α2 (PRKAA2), which mediated the adaptation of tumor cells to glucose starvation. Compound C dramatically inhibited the growth of ARID1A-deficient tumors and prolongs the survival of tumor-bearing mice. CONCLUSIONS: HCC patients with ARID1A mutation may benefit from synthetic lethal therapy targeting the ubiquitin-specific peptidase 9 X-linked (USP9X)-adenosine 5'-monophosphate-activated protein kinase (AMPK) axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Quinases Ativadas por AMP , Monofosfato de Adenosina , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glucose , Glutationa Transferase , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/genética
6.
Toxins (Basel) ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34822586

RESUMO

Ochratoxin A(OTA) is considered to be one of the most important contaminants of food and feed worldwide. The liver is one of key target organs for OTA to exert its toxic effects. Due to current lifestyle and diet, nonalcoholic fatty liver disease (NAFLD) has been the most common liver disease. To examine the potential effect of OTA on hepatic lipid metabolism and NAFLD, C57BL/6 male mice received 1 mg/kg OTA by gavage daily. Compared with controls, OTA increased lipid deposition and TG accumulation in mouse livers. In vitro OTA treatment also promoted lipid droplets accumulation in primary hepatocytes and HepG2 cells. Mechanistically, OTA prevented PPARγ degradation by reducing the interaction between PPARγ and its E3 ligase SIAH2, which led to activation of PPARγ signaling pathway. Furthermore, downregulation or inhibition of CD36, a known of PPARγ, alleviated OTA-induced lipid droplets deposition and TG accumulation. Therefore, OTA induces hepatic steatosis via PPARγ-CD36 axis, suggesting that OTA has an impact on liver lipid metabolism and may contribute to the development of metabolic diseases.


Assuntos
Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Ocratoxinas/toxicidade , Animais , Antígenos CD36/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Células Hep G2 , Hepatócitos/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , PPAR gama/metabolismo
7.
Nat Commun ; 12(1): 3059, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031390

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease in the world, however, no drug treatment has been approved for this disease. Thus, it is urgent to find effective therapeutic targets for clinical intervention. In this study, we find that liver-specific knockout of PPDPF (PPDPF-LKO) leads to spontaneous fatty liver formation in a mouse model at 32 weeks of age on chow diets, which is enhanced by HFD. Mechanistic study reveals that PPDPF negatively regulates mTORC1-S6K-SREBP1 signaling. PPDPF interferes with the interaction between Raptor and CUL4B-DDB1, an E3 ligase complex, which prevents ubiquitination and activation of Raptor. Accordingly, liver-specific PPDPF overexpression effectively inhibits HFD-induced mTOR signaling activation and hepatic steatosis in mice. These results suggest that PPDPF is a regulator of mTORC1 signaling in lipid metabolism, and may be a potential therapeutic candidate for NAFLD.


Assuntos
Fígado Gorduroso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Proc Natl Acad Sci U S A ; 117(9): 4770-4780, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071245

RESUMO

Recurrence and metastasis remain the major obstacles to successful treatment of hepatocellular carcinoma (HCC). Chromatin remodeling factor ARID2 is commonly mutated in HCC, indicating its important role in cancer development. However, its role in HCC metastasis is largely elusive. In this study, we find that ARID2 expression is significantly decreased in metastatic HCC tissues, showing negative correlation with pathological grade, organ metastasis and positive association with survival of HCC patients. ARID2 inhibits migration and invasion of HCC cells in vitro and metastasis in vivo. Moreover, ARID2 knockout promotes pulmonary metastasis in different HCC mouse models. Mechanistic study reveals that ARID2 represses epithelial-mesenchymal transition (EMT) of HCC cells by recruiting DNMT1 to Snail promoter, which increases promoter methylation and inhibits Snail transcription. In addition, we discover that ARID2 mutants with disrupted C2H2 domain lose the metastasis suppressor function, exhibiting a positive association with HCC metastasis and poor prognosis. In conclusion, our study reveals the metastasis suppressor role as well as the underlying mechanism of ARID2 in HCC and provides a potential therapeutic target for ARID2-deficient HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Fatores de Transcrição/metabolismo , Animais , Dedos de Zinco CYS2-HIS2 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Mutação , Metástase Neoplásica/patologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
9.
Oncogene ; 38(48): 7281-7293, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417183

RESUMO

Bone morphogenetic protein 10 (BMP10), one member of the BMP family, is involved in various development events. Dysregulation of BMP10 has been observed in several diseases, including hypertensive cardiac hypertrophy, Hirschsprung disease and blood vessel formation. However, its role in liver cancer remains largely unknown. In this study, we reported that BMP10 was significantly downregulated in HCC at both mRNA and protein level. Decreased BMP10 was associated with bigger tumor size, worse TNM stage, earlier recurrence and poorer survival. BMP10 negatively regulated HCC cell proliferation in vitro and in vivo. Mechanism study revealed that BMP10 suppressed tumor cell growth by inhibiting STAT3 signaling. Interestingly, we found that cytoplasmic BMP10 interacted with both receptor protein tyrosine phosphatase sigma (PTPRS) and STAT3, which facilitated dephosphorylation of STAT3 by PTPRS. Altogether, our study has revealed the clinical significance of BMP10 in HCC, and suppression of HCC cell growth by BMP10 via PTPRS-STAT3 axis, providing a potential therapeutic strategy for targeting STAT3 signaling in HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Fator de Transcrição STAT3/metabolismo , Adulto , Animais , Apoptose , Biomarcadores Tumorais/genética , Proteínas Morfogenéticas Ósseas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Fosforilação , Prognóstico , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Nat Commun ; 10(1): 2510, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175290

RESUMO

Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis-promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Primárias Múltiplas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/secundário , Células HEK293 , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Nus , Mucinas/metabolismo , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Transplante de Neoplasias , Neoplasias Primárias Múltiplas/patologia , RNA Mensageiro/metabolismo , Carga Tumoral
11.
Cell Prolif ; 52(3): e12583, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793395

RESUMO

OBJECTIVES: Wnt1-inducible signalling pathway protein 3 (WISP3/CCN6) belongs to the CCN (CYR61/CTGF/NOV) family of proteins, dysregulation of this family contributed to the tumorigenicity of various tumours. In this study, we need to explore its role in hepatocellular carcinoma that remains largely elusive. MATERIALS AND METHODS: The expression of WISP3/CCN6 was analysed by qRT-PCR and Western blotting. Effects of WISP3 on proliferation and metastasis of HCC cells were examined, respectively, by MTT assay and Boyden Chamber. Roles of WISP3 on HCC tumour growth and metastatic ability in vivo were detected in nude mice. Related mechanism study was confirmed by immunofluorescence and Western blotting. RESULTS: The expression of WISP3 was significantly downregulated in HCC clinical samples and cell lines, and reversely correlated with the tumour size. Forced expression of WISP3 in HCC cells significantly suppressed cell growth and migration in vitro as well as tumour growth and metastatic seeding in vivo. In contrast, downregulation of WISP3 accelerated cell proliferation and migration, and promoted in vivo metastasis. Further study revealed that WISP3 inhibited the translocation of ß-catenin to the nucleus by activating glycogen synthase kinase-3ß (GSK3ß). Moreover, constitutively active ß-catenin blocked the suppressive effects of WISP3 on HCC. CONCLUSIONS: Our study showed that WISP3 suppressed the progression of HCC by negative regulation of ß-catenin/TCF/LEF signalling, providing WISP3 as a potential therapeutic candidate for HCC.


Assuntos
Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Sinalização Intercelular CCN/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA