Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Blood ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046762

RESUMO

Atypical acute promyelocytic leukemia (aAPL) presents a complex landscape of retinoic acid receptor (RAR) fusion genes beyond the well-known PML::RARA fusion. Among these, 31 individually rare RARA and RARG fusion genes have been documented, often reported in the canonical X::RAR bipartite fusion form. Intriguingly, some artificially mimicked bipartite X::RAR fusions respond well to all-trans retinoic acid (ATRA) in vitro, contrasting with the ATRA resistance observed in patients. To unravel the underlying mechanisms, we conducted a comprehensive molecular investigation into the fusion transcripts in 27 RARA fusion gene-positive aAPL (RARA-aAPL) and 21 RARG-aAPL cases. Our analysis revealed an unexpected novel form of X::RAR::X or X::RAR::Y-type tripartite fusions in certain RARA- and all RARG-aAPL cases, with shared features and notable differences between these two disease subgroups. In RARA-aAPL cases, the occurrence of RARA 3' splices was associated with their 5' fusion partner genes, mapping across the coding region of helix 11_12 (H11_12) within the ligand-binding domain (LBD), resulting in LBD-H12 or H11_12 truncation. In RARG-aAPL cases, RARG 3' splices were consistently localized to the terminus of exon 9, leading to LBD-H11_12 truncation. Significant differences were also observed between RARA and RARG 5' splice patterns. Our analysis also revealed extensive involvement of transposable elements in constructing RARA and RARG 3' fusions, suggesting transposition mechanisms for fusion gene ontogeny. Both protein structural analysis and experimental results highlighted the pivotal role of LBD-H11_12/H12 truncation in driving ATRA unresponsiveness and leukemogenesis in tripartite fusion-positive aAPL, through a protein allosteric dysfunction mechanism.

2.
Hematology ; 28(1): 2198862, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37199349

RESUMO

BACKGROUND: Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. We aimed to build a ferroptosis-related gene (FRG) prognostic signature to predict the outcome of DLBCLs. METHODS: Our study retrospectively investigated the mRNA expression level and clinical data of 604 DLBCL patients from three GEO public datasets. We performed Cox regression analysis to extract the FRGs with prognostic values. ConsensusClusterPlus was used to categorize the DLBCL samples according to gene expression. The least absolute shrinkage and selection operator (LASSO) method and univariate Cox regression were implemented to construct the FRG prognostic signature. The association between the FRG model and clinical characteristics was also investigated. RESULTS: We identified 19 FRGs with potential prognostic values and classified the patients into clusters 1 and 2. Cluster 1 showed a shorter overall survival (OS) time than cluster 2. The two clusters had different patterns of infiltrating immune cells. LASSO was used to generate a six-gene risk signature (GCLC, LPCAT3, NFE2L2, ABCC1, SLC1A5, and GOT1), based on which a risk score formula and prognostic model were constructed for predicting the OS of DLBCL patients. Kaplan-Meier survival analysis proved that poorer OS was exhibited in the higher-risk patients stratified by the prognostic model in both the training and test cohorts. In addition, both the decision curve and the calibration plots showed that the nomogram had good agreement between the predicted results and actual observations. CONCLUSIONS: We developed and validated a novel FRG-based prognostic model which could help to predict the outcomes of DLBCL patient.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Ferroptose/genética , Estudos Retrospectivos , Prognóstico , Nomogramas , Linfoma Difuso de Grandes Células B/genética , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos
3.
Hum Cell ; 36(4): 1564-1577, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37222919

RESUMO

Currently, therapy for Chronic Myeloid Leukemia (CML) patients with the T315I mutation is a major challenge in clinical practice due to its high degree of resistance to first- and second-generation Tyrosine Kinase Inhibitors (TKIs). Chidamide, a Histone Deacetylase Inhibitor (HDACi) drug, is currently used to treat peripheral T-cell lymphoma. In this study, we investigated the anti-leukemia effects of chidamide on the CML cell lines Ba/F3 P210 and Ba/F3 T315I and primary tumor cells from CML patients with the T315I mutation. The underlying mechanism was investigated, and we found that chidamide could inhibit Ba/F3 T315I cells at G0/G1 phase. Signaling pathway analysis showed that chidamide induced H3 acetylation, downregulated pAKT expression and upregulated pSTAT5 expression in Ba/F3 T315I cells. Additionally, we found that the antitumor effect of chidamide could be exerted by regulating the crosstalk between apoptosis and autophagy. When chidamide was used in combination with imatinib or nilotinib, the antitumor effects were enhanced compared with chidamide alone in Ba/F3 T315I and Ba/F3 P210 cells. Therefore, we conclude that chidamide may overcome T315I mutation-related drug resistance in CML patients and works efficiently if used in combination with TKIs.


Assuntos
Inibidores de Histona Desacetilases , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mutação , Autofagia/genética , Apoptose/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
4.
Curr Cancer Drug Targets ; 23(8): 643-652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927430

RESUMO

BACKGROUND: LINC00461 has been implicated to be involved in several types of cancer while its roles in multiple myeloma remain unclear. Our study aims to investigate the roles of LINC00461 in multiple myeloma and explore its effects on ixazomib therapy. METHODS: LINC00461 and small nuclear ribonucleoprotein polypeptide (SNRP) B2 knockdown stable cell lines were constructed. Cell viability assays including MTT, cell number counting, and colony formation were performed. RNA-pull down and immunoblotting assays were conducted to determine the intramolecular interactions. qRT-PCR and western blotting were conducted to determine the levels of target genes. Kaplan-Meier analysis was used to evaluate overall survival rates. RESULTS: Knockdown of LINC00461 or SNRPB2 enhanced ixazomib's cytotoxicity, as well as affected its regulatory effects on cell apoptosis and cell cycle distribution. Further results showed that LINC00461 knockdown reduced the expression levels of SNRPB2 by their interactions. Additionally, a positive correlation between LINC00461 and SNRPB2 was found in patients with multiple myeloma. Low expression of SNRPB2 was associated with a high survival rate in patients with multiple myeloma. CONCLUSION: Knockdown of LINC00461 enhanced the therapeutic effects of ixazomib against multiple myeloma in part by the regulation of SNRPB2.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Glicina/farmacologia , Glicina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
5.
Front Genet ; 14: 1139351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873934

RESUMO

Background: Polycythemia Vera (PV) is a type of typical Myeloproliferative Neoplasms (MPNs) characterized with excessive erythropoiesis and thrombosis. Anoikis is a special programmed cell death mode induced by the adhesion disorder between cells and extracellular matrix (ECM) or adjacent cells facilitating cancer metastasis. However, few studies have focused on the role of anoikis in PV, especially on the development of PV. Methods: The microarray and RNA-seq results were screened from the Gene Expression Omnibus (GEO) database and the anoikis-related genes (ARGs) were downloaded from Genecards. The functional enrichment analysis of intersecting differentially expressed genes (DEGs) and protein-protein interaction (PPI) network analysis were performed to discover hub genes. The hub genes expression was tested in the training (GSE136335) and validation cohort (GSE145802), and RT-qPCR was performed to verify the gene expression in PV mice. Results: In the training GSE136335, a total of 1,195 DEGs was obtained from Myeloproliferative Neoplasm (MPN) patients compared with controls, among which 58 were anoikis-related DEGs. The significant enrichment of the apoptosis and cell adhesion pathways (i.e., cadherin binding) were shown in functional enrichment analysis. The PPI network was conducted to identify top five hub genes (CASP3, CYCS, HIF1A, IL1B, MCL1). The expression of CASP3 and IL1B were significantly upregulated both in validation cohort and PV mice and downregulated after treatment, suggesting that CASP3 and IL1B could be important indicators for disease surveillance. Conclusion: Our research revealed a relationship between anoikis and PV for the first time by combined analysis of gene level, protein interaction and functional enrichment, allowing novel insights into mechanisms of PV. Moreover, CASP3 and IL1B may become promising indicators of PV development and treatment.

7.
Bioorg Chem ; 129: 106217, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283176

RESUMO

BACKGROUND: Multiple myeloma (MM) is a hematological malignancy of plasma cells characterized by the production of monoclonal immunoglobulin protein. Despite significant advances in the treatment of MM, it remains an incurable disorder owing to its resistance to chemotherapy and refractory nature. Inhibitors of histone deacetylases (HDACIs) have been identified as promising therapeutic drugs for cancer treatment. At present, numerous HDACIs are under study for the treatment of MM in monotherapy or in conjunction with other agents. OBJECTIVES: In the present study, we investigated the anti-MM effect of CC1007, which was designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the targets regulated by the HDAC-MEF2 complex. DESIGN: The effect of CC1007 on human MM cell lines, namely U266 and MM1.S, and CD138+ cells collected from the bone marrow of patients with MM was evaluated. METHODS: The cells were subjected to growth-inhibition assay, apoptosis assay, cell cycle analysis, real-time PCR, western blotting, immunofluorescence, co-immunoprecipitation, ChIP assay, and siRNA transfection. Statistical differences were compared using two-tailed t tests or one-way analysis of variance followed by the Bonferroni post hoc test. RESULTS: CC1007 inhibited the proliferation of MM cell lines and primary MM cells and induced their apoptosis and cell cycle arrest. Furthermore, CC1007 decreased the expression of MEF2C and HDAC7, thereby disturbing their interaction and promoting the overexpression of Nur77, a target of MEF2C. The overexpression of Nur77 and its translocation from the nucleus to the cytoplasm resulted in its binding to B-cell lymphoma 2 on the mitochondrial surface, thereby inducing the release of cytochrome C and activating the mitochondrial apoptotic pathway. CONCLUSIONS: Since CC1007 demonstrates remarkable anti-MM effect on MM cells, it may be a promising drug for the treatment of MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Regulação para Cima , Linhagem Celular Tumoral , Histona Desacetilases/metabolismo , Apoptose , Inibidores de Histona Desacetilases/farmacologia
8.
Front Oncol ; 12: 870676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212426

RESUMO

Recently, it have been reported that Hepatitis A Virus-Cellular Receptor 2(HAVCR2,encoding T-cell immunoglobulin and Mucin-Containing Protein 3[TIM3]) mutations are associated with severe hemophagocytic syndrome(HLH) in subcutaneous panniculitis-like T-cell lymphoma(SPTCL),and there are also frequent mutations in sporadic SPTCL, suggesting the individuals harboring HAVCR2(TIM-3) germline mutations are highly susceptible to familial or sporadic SPTCL. Here, we identify a novel germline compound heterozygous mutation of TIM-3 gene,c.245A>G (p.Tyr82Cys) and c.265C>T(p.Arg89Cys) variations in a single familial case with EBV-positive peripheral T-cell lymphoma(NOS),accompanied HLH;we also detected Tyr82Cys germline mutation in TIM-3 gene in one sporadic patient with cutaneous T cell lymphoma. We screened the distributive frequencies for TIM-3 mutations in healthy controls(n=87), B-(n=79) or T-cell lymphoma(n=25) not SPTCL, and the results showed that the mutation was found in two out of 25 patients with T-cell lymphoma but was not detected in 79 patients with B-cell lymphoma nor in a group of 87 controls. The mRNA expression of TIM-3 on primary cells and transfected HEK293 cells reduced significantly, indicating Tyr82Cys and Arg89Cys mutations is a loss-of function mutations on TIM-3,resulting in a weakened TIM-3 signaling. Our results suggest Tyr82Cys TIM-3 germline mutations are not only limited in SPTCL, and also occurred in other types of T-cell lymphoma, especially complicated HLH. TIM-3 mutations may be an predisposing factor for T-cell lymphoma and molecular marker for auxiliary diagnosis in T cell lymphoma,especially complicated with HLH.

9.
Cell Death Dis ; 13(7): 586, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798703

RESUMO

Herein, we describe the clinical and hematological features of three genetically related families predisposed to myeloproliferative neoplasms (MPNs). Using whole-exome sequencing, we identified a c.1367delG mutation(p.Arg456fs) in CHST15 (NM_001270764), a gene encoding a type II transmembraneglycoproteinthat acts as a sulfotransferase and participates in the biosynthesis of chondroitin sulfate E, in germline and somatic cells in familial MPN. CHST15defects caused an increased JAK2V617F allele burden and upregulated p-Stat3 activity,leading to an increase in the proliferative and prodifferentiation potential of transgenic HEL cells. We demonstrated that mutant CHST15 is able to coimmmunoprecipitate the JAK2 protein,suggesting the presence of a CHST15-JAK2-Stat3 signaling axis in familial MPN. Gene expression profiling showed that the FREM1, IFI27 and C4B_2 genes are overexpressed in familial MPN, suggesting the activation of an "inflammatory response-extracellular matrix-immune regulation" signaling network in the CHST15 mutation background.We thus concluded that CHST15 is a novel gene that predisposes to familial MPN and increases the probability of disease development or transformation.


Assuntos
Glicoproteínas de Membrana , Transtornos Mieloproliferativos , Neoplasias , Sulfotransferases , Alelos , Mutação em Linhagem Germinativa , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Glicoproteínas de Membrana/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/genética , Sulfotransferases/genética
10.
Sci Rep ; 12(1): 11975, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831551

RESUMO

We aimed to comprehensively investigate the proteomic profile and underlying biological function of exosomal proteins associated with B-cell acute lymphoblastic leukemia. Exosomes were isolated from plasma samples collected from five patients with B-ALL and five healthy individuals, and their protein content was quantitatively analyzed by liquid chromatography with tandem mass spectrometry. A total of 342 differentially expressed proteins were identified in patients with B-ALL. The DEPs were mainly associated with protein metabolic processes and protein activity regulation and were significantly enriched in the Notch and autophagy pathways. Furthermore, we found that ADAM17 and ATG3 were upregulated in patients with B-ALL and enriched in the Notch and autophagy pathways, respectively. Further western blot analysis of exosomes collected from additional 18 patients with B-ALL and 10 healthy controls confirmed that both ADAM17 and ATG3 were overexpressed in exosomes derived from patients with B-ALL (p < 0.001). The areas under the curves of ADAM17 and ATG3 were 0.989 and 0.956, respectively, demonstrating their diagnostic potential. In conclusion, ADAM17 and ATG3 in plasma-derived exosomes may contribute to the progression of B-ALL by regulating the Notch and autophagy pathways. Hence, these proteins may represent valuable diagnostic biomarkers and therapeutic targets for B-ALL.


Assuntos
Exossomos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Cromatografia Líquida , Exossomos/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
11.
Invest New Drugs ; 40(5): 1117-1124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35834039

RESUMO

Chronic myelomonocytic leukemia (CMML) is a rare and aggressive myeloid malignancy with overlapped features of myelodysplastic syndromes/myeloproliferative neoplasms. Azacitidine (AZA), a hypomethylating agent, has been approved for the treatment of CMML in China, but real-world data are limited. Medical records of CMML patients who had received subcutaneously injected AZA were reviewed from January 2018 at five participating sites in China. Response was assessed according to the modified International Working Group (IWG 2006) criteria. Between January 2018 and November 2020, a total of 24 patients with CMML were included with a median age of 63 years. Patients received a median of 3 cycles of AZA treatment (range, 1-8). Overall response rate (ORR) was 37.5% (9 of 24); CR rate, PR rate, and mCR/HI rate were 8.3% (n = 2), 8.3% (n = 2), and 20.8% (n = 5), respectively. At a median duration of follow-up of 14.0 months (range 0.0-22.0 months), the median overall survival (OS) was 23.0 months. Univariate analysis revealed that ≥ 3 cycles of treatment was significantly associated with a higher 1-year OS rate compared with < 3 cycles of AZA treatment. Treatment was generally well-tolerated. The most common (> 10%) AEs were thrombocytopenia (n = 7, 29.2%), pneumonitis (n = 4, 16.7%) and fever (n = 3, 12.5%). This study provides valuable real-life data in China on the treatment schedules, efficacy and safety of AZA in the treatment of CMML.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Antimetabólitos Antineoplásicos/efeitos adversos , Azacitidina/efeitos adversos , Humanos , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Estudos Retrospectivos , Resultado do Tratamento
12.
Stem Cells Int ; 2022: 4855517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419059

RESUMO

Mesenchymal stem cells (MSCs) participate in the occurrence and development of multiple myeloma. This study is aimed at exploring whether the presence of MSCs affects dexamethasone's antitumor effects against multiple myeloma. Multiple myeloma cells (OPM-2 and RPMI8226 cells) were cocultured with MSCs with or without dexamethasone. Cell viability was determined by using cell number count, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and colony formation assay, respectively. Cell cycle distribution and cell apoptosis were evaluated by using flow cytometry. The mRNA and protein expressions of target genes were checked by using qRT-PCR and western blotting, respectively. It was found that cell viability of multiple myeloma cells increased in the presence of MSCs. Besides, the presence of MSCs suppressed cell apoptosis induced by dexamethasone via the regulation of BCL-2 (B cell lymphoma 2). The presence of MSCs also affected the effects of dexamethasone on cell cycle distribution. Similarly, LINC00461 overexpression suppressed the inhibition of cell proliferation, suppressed the induction of cell apoptosis, and affected the effects on cell cycle distribution induced by dexamethasone insult. However, LINC00461 knockdown enhanced the inhibitory effects on cell proliferation and the induction of cell apoptosis induced by dexamethasone. In summary, MSCs inhibited the effects of dexamethasone on multiple myeloma and its regulatory effects were associated with LINC00461.

13.
J Am Heart Assoc ; 10(19): e023491, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34569277

RESUMO

Background Therapy with mesenchymal stem cells remains a promising but challenging approach to critical limb ischemia in diabetes because of the dismal cell survival. Methods and Results Critical limb ischemia in type 2 diabetes mouse model was used to explore the impact of diabetic limb ischemia on the survival of bone marrow mesenchymal stromal cells (bMSCs). Inhibition of intracellular reactive oxygen species was achieved with concomitant overexpression of superoxide dismutase (SOD)-1 and glutathione peroxidase-1 in the transplanted bMSCs, and extracellular reactive oxygen species was attenuated using SOD-3 overexpression and N-acetylcysteine treatment. In vivo optical fluorescence imaging and laser Doppler perfusion imaging were used to track cell retention and determine blood flow in diabetic ischemic limb, respectively. Survival of the transplanted bMSCs was significantly decreased in diabetic ischemic limb compared with the control. In vitro study indicated that advanced glycation end products, not high glucose, significantly decreased the proliferation of bMSCs and increased their apoptosis associated with increased reactive oxygen species production and selective reduction of SOD-1 and SOD-3. In vivo study demonstrated that concomitant overexpression of SOD-1, SOD-3, and glutathione peroxidase-1, or host treatment with N-acetylcysteine, significantly enhanced in vivo survival of transplanted bMSCs, and improved critical limb ischemia in diabetic mice. Combination of triple antioxidant enzyme overexpression in bMSCs with host N-acetylcysteine treatment further improved bMSC survival with enhanced circulatory and functional recovery from diabetic critical limb ischemia. Conclusions Simultaneous suppression of reactive oxygen species from transplanted bMSCs and host tissue could additively enhance bMSC survival in diabetic ischemic limb with increased therapeutic efficacy in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acetilcisteína/farmacologia , Animais , Antioxidantes , Medula Óssea , Células da Medula Óssea , Isquemia Crônica Crítica de Membro , Diabetes Mellitus Tipo 2/complicações , Glutationa Peroxidase , Isquemia/terapia , Camundongos , Espécies Reativas de Oxigênio , Superóxido Dismutase
14.
Am J Transl Res ; 13(8): 8860-8872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540000

RESUMO

In patients with chronic myelogenous leukemia (CML), resistance to tyrosine kinase inhibitor (TKI) therapy, like imatinib, can cause death, progression to accelerated phase or blast crises, and the need for maintenance treatment. Icaritin is an active component of the genus Epimedium, a traditional Chinese herbal medicine. Icaritin has been shown to notably inhibit the growth of CML cells. To explore the potential mechanisms of inhibiting growth and inducing cell senescence in imatinib-resistant CML cells by icaritin, MTT assays were used to assess the cell viability. The apoptosis and cell cycle arrest were evaluated using flow cytometry. The SA-ß-Gal staining and the intracellular reactive oxygen species (ROS) production were measured using flow cytometry to detect the senescent cells. qRT-PCR was conducted to assess the expression of the cell cycle-associated proteins, and western blotting was used to analyze the expressions of the JAK2 and STAT3 phosphorylation proteins. The results showed that icaritin inhibited cell growth and induced cell senescence in imatinib-resistant CML cells, which is associated with the regulation of the JAK2/STAT3/P21 axis and accompanied by the accumulation of ROS. Our data suggest that icaritin is a promising therapeutic strategy for the treatment of imatinib-resistant patients with CML.

15.
Cell Death Discov ; 7(1): 268, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588425

RESUMO

Constitutive activation of JAK2/STAT3 is a major oncogenic signaling event involved in the development of Burkitt lymphoma (BL). In the present study, we investigated the antilymphoma activity of TG101209, a specific JAK2 inhibitor, on EBV-positive and EBV-negative Burkitt lymphoma cell lines and primary BL cells. The results showed that TG101209 had a significant antilymphoma effect by inhibiting BL cell growth and inducing apoptosis along with cell differentiation toward mature B cells in vitro. We also found that TG101209 displayed significant synergistic action and a sensitizing effect on the anti-Burkitt lymphoma activity of doxorubicin. In vivo experiments indicated that TG101209 could suppress tumor growth and prolong the overall survival of BL cell-bearing mice. The mechanistic study indicated that TG101209, by suppressing the JAK2/STAT3/c-MYB signaling axis and crosstalk between the downstream signaling pathways, plays an antilymphoma role. These data suggested that TG101209 may be a promising agent or alternative choice for the treatment of BL.

16.
Cell Death Dis ; 12(9): 795, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404765

RESUMO

Uncontrolled proliferation is the hallmark of cancer cells. Previous studies mainly focused on the role of protein-coding genes in cancer cell proliferation. Emerging evidence showed that long non-coding RNAs (lncRNAs) also play critical roles in cancer cell proliferation and growth. LncRNA KCNQ1OT1 is found to contribute to carcinogenesis, but its role in acute promyelocytic leukemia (APL) is unclear. In this study, by analyzing data from Gene Expression Omnibus, The Cancer Genome Atlas database and our clinical samples, we found that KCNQ1OT1 was selectively highly expressed in APL. Functional assays demonstrated that knockdown of KCNQ1OT1 reduced APL cell proliferation and increased apoptosis. Further evidence showed that KCNQ1OT1 was mainly located in the cytoplasm of APL patient-derived NB4 cells and APL patient bone marrow samples. Mechanistically, KCNQ1OT1 bound to RNA binding protein FUS, and silencing either KCNQ1OT1 or FUS reduced the expression level and stability of MAP3K1 mRNA. Whereas KCNQ1OT1 and FUS did not affect each other. Importantly, knockdown of MAP3K1 impaired APL cell proliferation. Finally, c-Myc transactivated KCNQ1OT1 in APL cells through binding to its promoter while knockdown of c-Myc decreased KCNQ1OT1 expression. Our results not only revealed that c-Myc transactivated KCNQ1OT1 and upregulated KCNQ1OT1 promoted APL cell proliferation, but also demonstrated that KCNQ1OT1 bound to FUS to synergistically stabilize MAP3K1 mRNA, thus facilitating APL cell proliferation. This study established a previously unidentified role of KCNQ1OT1 in the development of APL, and KCNQ1OT1 may serve as a potential therapeutic target for APL.


Assuntos
Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , MAP Quinase Quinase Quinase 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Estabilidade Enzimática , Regulação Leucêmica da Expressão Gênica , Humanos , Modelos Biológicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ativação Transcricional/genética
17.
Ann Hematol ; 100(9): 2229-2240, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34228147

RESUMO

The current study analyzed the clinical and genetic characteristics of a family with familial myeloproliferative neoplasms (MPNs). Whole-exome sequencing was conducted, and a germline heterozygous mutation in lysine methyltransferase 2A (KMT2A, also known as MLL1), G3131S (c.9391G > A, p.Gly3131Ser, rs150804738), was identified. Somatic DNA and germline DNA were collected from 8 family members, 120 healthy donors (somatic DNA), and 30 healthy donors (germline DNA). Using Sanger sequencing, the KMT2A G3131S mutation was analyzed. Four individuals, the proband (II-1), his sister (patient II-2), and family members II-3 and III-1 (somatic DNA and germline DNA), tested positive for the KMT2A G3131S mutation. We did not observe the KMT2A G3131S mutation in healthy donors (somatic DNA and germline DNA), indicating that this is not a SNP. Bioinformatics analysis of KMT2A G3131S suggested that protein structure changes could be caused by this mutation. To further elucidate the function of KMT2A G3131S, the CRISPR-Cas9 technique was applied to generate a KMT2A G3131S heterozygous K562 cell line. The colony formation potency, apoptosis, and cell cycle of KMT2A G3131S mutant K562 cells were analyzed. The results demonstrated that KMT2A G3131S mutant K562 cells showed increased proliferation and colony formation ability. Immunophenotyping was performed using flow cytometry to analyze the surface marker expression of gene-edited KMT2A G3131S mutant K562 cells. A significant increase in CD11b and mild increases in CD61 and CD235a were observed in KMT2A G3131S mutant K562 cells, suggesting that the KMT2A G3131S mutant could cause an increase in myeloproliferation. May-Giemsa staining showed that the morphological changes in KMT2A G3131S mutant K562 cells were consistent with the flow cytometry analysis. To verify which downstream genes were affected by the KMT2A G3131S mutant, we performed real-time PCR to evaluate the expression of previously reported KMT2A-related genes and found that C-MYB expression was significantly decreased. Western blotting was applied to investigate the expression of Kmt2a and C-myb proteins, and the results showed that in KMT2A G3131S mutant K562 cells, the expression of C-myb was decreased. Our findings suggested that KMT2A G3131S could affect the myeloproliferation of K562 cells and decrease C-myb expression. In conclusion, KMT2A G3131S could be considered a novel genetic susceptibility gene in familial MPN.


Assuntos
Mutação em Linhagem Germinativa , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Transtornos Mieloproliferativos/genética , Apoptose , Proliferação de Células , Feminino , Predisposição Genética para Doença , Humanos , Células K562 , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/congênito , Linhagem , Sequenciamento do Exoma
18.
Am J Cancer Res ; 11(4): 1104-1120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948348

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is a common type of hematologic malignancy characterized by the uncontrolled growth of immature B lymphocytes. Genomics, transcriptomics, and proteomics at different levels contribute to early diagnosis and can thereby provide better treatment for cancer. MicroRNAs (miRNAs) are conducive to the diagnosis and treatment of patients with B-ALL. Moreover, evidence suggests that runaway miRNAs and exosomes containing miRNA may be involved in the occurrence of B-ALL, which can then be used as potential biomarkers. This review summarizes the role of miRNAs in the pathogenesis, diagnosis, prognosis, and treatment of B-ALL.

19.
Ann Med ; 53(1): 567-575, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33821734

RESUMO

INTRODUCTION: Acute leukemia (AL) occurring in pregnancy is extremely rare, and its treatment is a clinical dilemma. METHODS: We retrospectively reviewed the medical records of our hospital from 2010 to 2019. RESULTS: Twenty-one patients were diagnosed with AL during pregnancy. Of whom, eighteen had acute myeloid leukemia, and 3 had acute lymphoblastic leukemia. Six, eight and seven patients were diagnosed during the first, second, and third trimester, respectively. Six of the 21 patients experienced therapeutic abortion and 1 had spontaneous abortion, whereas 9 gave birth to healthy babies (4 through vaginal deliveries and 5 with Caesarean sections). Four babies had been exposed to chemotherapeutic agents, but no congenital malformations were observed. Sixteen patients received chemotherapy, while 4 patients died before chemotherapy and one was discharged after refusing chemotherapy. The complete remission rate of the 10 patients who began chemotherapy immediately after diagnosis was 80%, compared with 66.7% in the 6 patients who started chemotherapy after abortion or delivery. Three remain alive. CONCLUSIONS: In general, initiation of chemotherapy as early as possible may increase the CR rate. Combined with literature data, we proposed that, for patients diagnosed in early and late stages of pregnancy (>30 weeks), elective termination or induced delivery before chemotherapy may be a good choice for better maternal (and fetal) outcome.KEY MESSAGESAcute leukaemia diagnosed in pregnancy is extremely rare, and its treatment is a clinical dilemma.In general, initiation of chemotherapy as early as possible may increase the CR rate.For patients who are diagnosed in the first trimester or late stage of pregnancy (>30 weeks), elective termination or induced delivery before starting chemotherapy may be a good choice for better maternal (and fetal) outcome.


Assuntos
Leucemia Mieloide Aguda/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Complicações Neoplásicas na Gravidez/terapia , Aborto Induzido , Adulto , Antineoplásicos/uso terapêutico , Feminino , Humanos , Leucemia Mieloide Aguda/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Gravidez , Complicações Neoplásicas na Gravidez/fisiopatologia , Resultado da Gravidez , Indução de Remissão , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
20.
Aging (Albany NY) ; 13(9): 13179-13194, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33901013

RESUMO

Better understanding of the transcriptional regulatory network in acute promyelocytic leukemia (APL) cells is critical to illustrate the pathogenesis of other types of acute myeloid leukemia. Previous studies have primarily focused on the retinoic acid signaling pathway and how it is interfered with by promyelocytic leukemia/retinoic acid receptor-α (PML/RARα) fusion protein. However, this hardly explains how APL cells are blocked at the promyelocytic stage. Here, we demonstrated that C/EBPα bound and transactivated the promoter of long non-coding RNA NEAT1, an essential element for terminal differentiation of APL cells, through C/EBP binding sites. More importantly, PML/RARα repressed C/EBPα-mediated transactivation of NEAT1 through binding to NEAT1 promoter. Consistently, mutation of the C/EBP sites or deletion of retinoic acid responsive elements (RAREs) and RARE half motifs abrogated the PML/RARα-mediated repression. Moreover, silencing of C/EBPα attenuated ATRA-induced NEAT1 upregulation and APL cell differentiation. Finally, simultaneous knockdown of C/EBPα and C/EBPß reduces ATRA-induced upregulation of C/EBPε and dramatically impaired NEAT1 activation and APL cell differentiation. In sum, C/EBPα binds and transactivates NEAT1 whereas PML/RARα represses this process. This study describes an essential role for C/EBPα in PML/RARα-mediated repression of NEAT1 and suggests that PML/RARα could contribute to the pathogenesis of APL through suppressing C/EBPα targets.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , RNA Longo não Codificante/genética , Tretinoína/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Humanos , Receptor alfa de Ácido Retinoico/genética , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA