Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Surg ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708888

RESUMO

OBJECTIVE: To compare the effect of balanced multielectrolyte solutions(BMES) versus normal saline(NS) for intravenous fluid on chloride levels and clinical outcomes.in patients with predicted severe acute pancreatitis (pSAP). SUMMARY BACKGROUND DATA: Isotonic crystalloids are recommended for initial fluid therapy in acute pancreatitis, but whether the use of BMES in preference to NS confers clinical benefits is unknown. METHODS: In this multicenter, stepped-wedge, cluster-randomized trial, we enrolled patients with pSAP (APACHE II score ≥8 and C-reactive protein >150 mg/L) admitted within 72 hours of the advent of symptoms. The study sites were randomly assigned to staggered start dates for one-way crossover from the NS phase (NS for intravenous fluid) to the BMES phase(Sterofudin for intravenous fluid). The primary endpoint was the serum chloride concentration on trial day3. Secondary endpoints included a composite of clinical and laboratory measures. RESULTS: Overall, 259 patients were enrolled from eleven sites to receive NS(n=147) or BMES(n=112). On trial day3, the mean chloride level was significantly lower in patients who received BMES(101.8 mmol/L(SD4.8) versus 105.8 mmol/L(SD5.9), difference -4.3 mmol/L [95%CI -5.6 to -3.0 mmol/L];P<0.001). For secondary endpoints, patients who received BMES had less systemic inflammatory response syndrome(19/112,17.0% versus 43/147,29.3%, P=0.024) and increased organ failure-free days (3.9 d(SD2.7) versus 3.5days(SD2.7), P<0.001) by trial day7. They also spent more time alive and out of ICU(26.4 d(SD5.2) versus 25.0days(SD6.4), P=0.009) and hospital(19.8 d(SD6.1) versus16.3days(SD7.2), P<0.001) by trial day30. CONCLUSIONS: Among patients with pSAP, using BMES in preference to NS resulted in a significantly more physiological serum chloride level, which was associated with multiple clinical benefits(Trial registration number: ChiCTR2100044432).

2.
Life Sci ; 320: 121540, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907324

RESUMO

Our previous studies reported that low-dose paclitaxel (Taxol) ameliorated renal fibrosis in the unilateral ureteral obstruction and remnant kidney models. However, the regulatory role of Taxol in diabetic kidney disease (DKD) is still unclear. Herein, we observed that low-dose Taxol attenuated high glucose-increased expression of fibronectin, collagen I and collagen IV in Boston University mouse proximal tubule cells. Mechanistically, Taxol suppressed the expression of homeodomain-interacting protein kinase 2 (HIPK2) via disrupting the binding of Smad3 to HIPK2 promoter region, and consequently inhibited the activation of p53. Besides, Taxol ameliorated RF in Streptozotocin mice and db/db-induced DKD via suppression of Smad3/HIPK2 axis as well as inactivation of p53. Altogether, these results suggest that Taxol can block Smad3-HIPK2/p53 axis, thereby attenuating the progression of DKD. Hence, Taxol is a promising therapeutic drug for DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Paclitaxel/farmacologia , Regulação para Baixo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Rim/metabolismo , Fibrose , Colágeno/metabolismo , Diabetes Mellitus/patologia , Proteínas Serina-Treonina Quinases/metabolismo
3.
Life Sci ; 308: 120921, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057400

RESUMO

AIMS: Although previous studies reported that miRNAs are involved in the progression of acute kidney injury (AKI), their exact function and mechanism in ischemic AKI remains largely unknown. This study aims to define the role of miR-6918-5p in ischemia-reperfusion AKI. Materials and methods The renal arteries of C57BL/6J mice were clamped to establish a model of ischemia-reperfusion renal injury. BUMPT cells were added with Antimycin A and calcium ionophore to establish a model of ATP depletion in vitro. Cell apoptosis was detected by CCK8, flow cytometry and western blot, while HE staining and TUNEL staining were used to assess the degree of kidney damage. KEY FINDINGS: We suppressed mmu_miR-6918-5p by ischemic injury in vitro and in vivo. We found that ischemia-reperfusion (I/R)-induced renal tubular cell apoptosis and the expression of cleaved caspase3 were enhanced by the inhibitor of mmu_miR-6918-5p; this effect was attenuated by an mmu_miR-6918-5p mimic. Mechanistically, mmu_miR-6918-5p binds to the 3' UTR region of MBD2 and represses its expression. The mmu_miR-6918-5p mimic alleviated the ischemic AKI by targeting MBD2. Conversely, the inhibitor of mmu_miR-6918-5p enhanced the ischemic AKI; this was diminished by MBD2-KO. SIGNIFICANCE: Mmu_miR-6918-5p protected against the development of ischemic AKI by targeting MBD2.


Assuntos
Injúria Renal Aguda , MicroRNAs , Traumatismo por Reperfusão , Regiões 3' não Traduzidas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Trifosfato de Adenosina , Animais , Antimicina A/efeitos adversos , Apoptose/genética , Ionóforos de Cálcio , Linhagem Celular , Proteínas de Ligação a DNA , Isquemia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
4.
Bioengineered ; 13(2): 3395-3409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048778

RESUMO

G protein-coupled protein receptor CXC chemokine receptor 4 (CXCR4) has been shown to be involved in the development of sepsis; however, it remains unclear whether CXCR4 participates in the septic myocardial injury. In our study, treatment with lipopolysaccharide (LPS) increased the expression of specificity protein 1 (SP1) and CXCR4 in H9c2 cells. Notably, a positive association between SP1 and CXCR4 expression was observed in LPS-treated H9c2 cells, and SP1 positively regulated CXCR4 expression in H9c2 cells. Moreover, silencing of SP1 or CXCR4 suppressed LPS-induced inflammation and cell apoptosis in H9c2 cells, as evidenced by the increase in cell viability and decrease in lactate dehydrogenase release, interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels, and caspase-3 activity. Additionally, overexpression of CXCR4 abolished the protective effects of SP1 silencing on LPS-induced injury in H9c2 cells. SP1 was also shown to enhance the promoter activity of CXCR4 by directly binding with the binding motif site - 109/-100 in CXCR4 promoter. Besides, downregulation of SP1 or CXCR4 blocked LPS-induced activation of the NF-кB signaling in H9c2 cells. Furthermore, inhibition of NF-кB signaling by DHMEQ abolished LPS-induced myocardial inflammation and apoptosis. In conclusion, silencing of SP1 protected H9c2 cells against LPS-induced injury by binding to the promoter of CXCR4 and suppressing the NF-κB signaling pathway. Hence, our findings provide evidence that manipulation of SP1 or CXCR4 may be an effective approach to promote prevention or recovery of septic myocardial injury, and thereby, may serve as a potential therapeutic strategy for sepsis.


Assuntos
Lipopolissacarídeos/toxicidade , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Receptores CXCR4/metabolismo , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular , NF-kappa B/genética , Ratos , Receptores CXCR4/genética , Fator de Transcrição Sp1/genética
5.
Int Immunopharmacol ; 100: 108106, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530204

RESUMO

BACKGROUND: NOD-like receptor protein 3 (NLRP3) inflammasome activation has emerged as a crucial contributor to sepsis-induced lung injury. Geranylgeranyl diphosphate synthase 1 (GGPPS1) reportedly exerts the pro-inflammatory capability via activation of NLRP3 inflammasome. However, little is known about the role and mechanism of GGPPS1 in sepsis-induced lung injury. METHODS: Mice underwent cecal ligation and puncture (CLP) surgery to establish the in vivo model of sepsis. The lung injury of mice was assessed by analyzing the histological changes, the lung wet/dry ratio, PaO2/FiO2 ratio, myeloperoxidase (MPO) activity, total protein content, total cell, and polymorphonuclear leukocyte counts. Mouse alveolar macrophages MH-S were exposed to LPS for developing in vitro model of sepsis. The mRNA and protein expression levels of GGPPS1, beclin-1, and autophagy and inflammasome-related genes were detected using quantitative reverse transcription-polymerase chain reaction and western blot assays. Enzyme-linked immunosorbent assay was conducted to determine the levels of interleukin (IL)-1ß and IL-18. RESULTS: We successfully established sepsis-induced acute lung injury in vivo by CLP surgery. GGPPS1 was upregulated in the lung tissues of CLP-induced septic mice. The activation of autophagy and NLRP3 inflammasome were found in the lung tissues of CLP-induced septic mice. The addition of exogenous GGPP (synthesis products catalyzed by GGPPS1) and autophagic inhibitor 3-MA aggravated sepsis-induced hypoxemia, alveolar inflammatory response, intrapulmonary hemorrhage, and pulmonary edema, as evidenced by increased lung injury score, lung wet/dry weight ratio, MPO activity, total protein content, total cell, and PMNs counts, and decreased PaO2/FiO2 ratio. While NLRP3 inhibitor MCC950 exerted the opposite effects. Additionally, administration of exogenous GGPP could inhibit the activation of autophagy, enhance the activity of NLRP3 inflammasome, and the production of IL-1ß and IL-18. Inhibition of autophagy by 3-MA treatment also promoted the activity of NLRP3 inflammasome and the production of IL-1ß and IL-18. While MCC950 restrained the activity of NLRP3 inflammasome, but did not affect the activation of autophagy. Notably, the expression of GGPPS1 was unaltered in CLP-induced mice following GGPP, 3-MA, or MCC950 treatment. Moreover, GGPPS1 was upregulated in MH-S cells stimulated with LPS, and GGPPS1 knockdown enhanced the activation of autophagy and inhibited the activity of NLRP3 inflammasome in vitro. Importantly, depletion of GGPPS1 could alleviate LPS-induced inflammatory response by inducing autophagy-dependent NLRP3 inflammasome inhibition. CONCLUSION: GGPPS1 knockdown suppressed NLRP3 inflammasome activity via promoting autophagy and then attenuated sepsis-induced acute lung injury, revealing a novel target for treating sepsis-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Autofagia , Farnesiltranstransferase/deficiência , Inflamassomos/metabolismo , Pulmão/enzimologia , Macrófagos Alveolares/enzimologia , Complexos Multienzimáticos/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/enzimologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Adenina/análogos & derivados , Adenina/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Farnesiltranstransferase/genética , Furanos/farmacologia , Técnicas de Silenciamento de Genes , Indenos/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamassomos/genética , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfatos de Poli-Isoprenil/toxicidade , Sepse/imunologia , Sepse/patologia , Sepse/prevenção & controle , Transdução de Sinais , Sulfonamidas/farmacologia
6.
J Biomed Nanotechnol ; 17(1): 78-89, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653498

RESUMO

Currently chemotherapy drugs are usually used as first-line treatments for castration-resistant prostate cancer (CRPC), but they are ineffective and accompanied by serious side effects. MicroRNA-34a (miR-34a) simultaneously targets multiple genes related to the cell apoptosis in CRPC cells without obvious side effects. It has shown great potential in the treatment of CRPC. Previous studies focused on miR-34a increasing the sensitivity of chemotherapy drugs to chemoresistant prostate cancer cells. There are few researches on miR-34a alone in the treatment of CRPC. But the macromolecular miR-34a is difficult to enter the cell and is easily degraded by nuclease. Therefore, we constructed methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) nanoparticles to encapsulate miR-34a (miR-34a/NP). The results showed that miR-34a/NP protects miR-34a from degradation by nucleases and can be phagocytized by PC-3 CRPC cells. Ultrasound induces microbubble cavitation (UIMC) improves cell membrane permeability and capillary gaps, and further promotes miR-34a/NP to enter cells PC-3 and prostate cancer xenografts. The miR-34a/NP that enters the cell and tumor tissue releases miR-34a, which suppressed CRPC cells PC-3 proliferation, promoted its apoptosis, and inhibited the growth of CRPC xenografts. Our research verified that miR-34a/NP, especially combined with UIMC, has a significant anti-tumor effect on CRPC.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Microbolhas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética
7.
Front Pharmacol ; 10: 1651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116672

RESUMO

The flow fields generated by the acoustic behavior of microbubbles can significantly increase cell permeability. This facilitates the cellular uptake of external molecules in a process known as ultrasound-mediated drug delivery. To promote its clinical translation, this study investigated the relationships among the ultrasound parameters, acoustic behavior of microbubbles, flow fields, and delivery results. SonoVue microbubbles were activated by 1 MHz pulsed ultrasound with 100 Hz pulse repetition frequency, 1:5 duty cycle, and 0.20/0.35/0.70 MPa peak rarefactional pressure. Micro-particle image velocimetry was used to detect the microbubble behavior and the resulting flow fields. Then HeLa human cervical cancer cells were treated with the same conditions for 2, 4, 10, 30, and 60 s, respectively. Fluorescein isothiocyanate and propidium iodide were used to quantitate the rates of sonoporated cells with a flow cytometer. The results indicate that (1) microbubbles exhibited different behavior in ultrasound fields of different peak rarefactional pressures. At peak rarefactional pressures of 0.20 and 0.35 MPa, the dispersed microbubbles clumped together into clusters, and the clusters showed no apparent movement. At a peak rarefactional pressure of 0.70 MPa, the microbubbles were partially broken, and the remainders underwent clustering and coalescence to form bubble clusters that exhibited translational oscillation. (2) The flow fields were unsteady before the unification of the microbubbles. After that, the flow fields showed a clear pattern. (3)The delivery efficiency improved with the shear stress of the flow fields increased. Before the formation of the microbubble/bubble cluster, the maximum shear stresses of the 0.20, 0.35, and 0.70 MPa groups were 56.0, 87.5 and 406.4 mPa, respectively, and the rates of the reversibly sonoporated cells were 2.4% ± 0.4%, 5.5% ± 1.3%, and 16.6% ± 0.2%. After the cluster formation, the maximum shear stresses of the three groups were 9.1, 8.7, and 71.7 mPa, respectively. The former two could not mediate sonoporation, whereas the last one could. These findings demonstrate the critical role of flow fields in ultrasound-mediated drug delivery and contribute to its clinical applications.

8.
Acta Biochim Biophys Sin (Shanghai) ; 49(1): 90-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27932392

RESUMO

Cancer stem cells (CSCs) contribute to the relapse and development of new neoplasm lesions. While most available clinical approaches, such as chemical and radiation therapies, will kill the majority of cancer cells, they do not kill them all. Some resisting cells, like CSCs, are able to survive due to their excellent self-maintaining capabilities, even in challenging environments. In the present study, we investigated the mRNA level of DNA repair genes of colon CSCs from the HT29 cell line in response to single-strand damage and double-strand breaks, as well as the evident upregulation of key genes in base excision repair, mismatch repair, non-homologous end-joining, and homologous recombination pathways in these cells. Digital gene expression analysis identified upregulated genes in CD44+ HT29 cells that may play important roles in DNA repair. Our results reveal that colon CSCs bear efficient DNA repair abilities, which might explain the survival of colon CSCs after repeated chemical and radiation therapy.


Assuntos
Neoplasias do Colo/genética , Reparo do DNA/genética , Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos
9.
Biomed Pharmacother ; 75: 185-90, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26337230

RESUMO

BACKGROUND: MicroRNA (miR)-365 functions as a tumor suppressor in non-small cell lung cancer (NSCLC) cells by targeting thyroid transcription factor 1 (TTF-1). AIM: To investigate miR-365 and TTF-1 mRNA expression in serum of NSCLC and their associations with patients' prognosis. METHODS: MiR-365 and TTF-1 mRNA expression in 100 NSCLCs and 100 healthy control sera were detected by quantitative real-time PCR (qRT-PCR). RESULTS: MiR-365 expression level was significantly lower in NSCLC serum samples than in healthy control serum samples (P<0.001), while TTF-1 mRNA expression level was significantly increased in NSCLC serum samples compared to healthy control serum samples (P<0.001). In addition, low miR-365 expression and high TTF-1 expression, alone or in combination, were all significantly associated with poor differentiation (P=0.008, 0.008 and 0.001, respectively), advanced TNM stage (P=0.001, 0.005 and <0.001 respectively) and positive lymph node metastasis (P=0.02, 0.02 and 0.01, respectively) of NSCLC patients. Notably, NSCLC patients with combined low miR-365 expression and high TTF-1 expression (miR-365-low/TTF-1-high) had shortest overall survival (P<0.001). Furthermore, multivariate analysis showed that miR-365 expression (P=0.01), TTF-1 expression (P=0.01), and combined expression of miR-365 and TTF-1 (miR-365/TTF-1, P=0.001) were all independent prognostic factors for overall survival in NSCLC patients. CONCLUSIONS: Our data reveal that preoperative serum miR-365 and TTF-1 mRNA levels may be both effective indicators of tumor aggressiveness in human NSCLC. More interestingly, miR-365 and its target gene TTF-1 appear to be synergistic risk factors for the reduction in overall survival of patients with NSCLC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Neoplasias Pulmonares/sangue , MicroRNAs/sangue , Proteínas Nucleares/sangue , RNA Mensageiro/sangue , Fatores de Transcrição/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/secundário , Estudos de Casos e Controles , Diferenciação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Fator Nuclear 1 de Tireoide , Fatores de Tempo , Fatores de Transcrição/genética
10.
Med Oncol ; 31(9): 129, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25064732

RESUMO

microRNA (miR)-138 has been recognized as a potential tumor suppressor via regulating 3-phosphoinositide-dependent protein kinase-1 (PDK1) expression in non-small cell lung cancer (NSCLC) cells. The aim of this study was to investigate miR-138 and PDK1 mRNA expression in serum of NSCLC and their associations with patients' prognosis. miR-138 and PDK1 mRNA expressions in 100 NSCLCs and 100 healthy control sera were detected by quantitative real-time PCR. miR-138 expression level was significantly lower in NSCLC serum samples than in healthy control serum samples (P < 0.001), while PDK1 mRNA expression level was significantly increased in NSCLC serum samples compared to healthy control serum samples (P < 0.001). In addition, miR-138 downregulation and PDK1 upregulation were both significantly associated with advanced tumor-node-metastasis (TNM) stage (both P = 0.002) and positive lymph node metastasis (both P = 0.01) of NSCLC patients. Moreover, the overall survival of NSCLC patients with low miR-138 expression or high PDK1 mRNA expression was obviously shorter than those with high miR-138 expression or low PDK1 mRNA expression (both P < 0.001). Notably, NSCLC patients with combined miR-138 downregulation and PDK1 upregulation (miR-138-low/PDK1-high) had shortest overall survival (P < 0.001). Furthermore, multivariate analysis showed that miR-138 expression (P = 0.01), PDK1 expression (P = 0.01), and combined expression of miR-138 and PDK1 (miR-138/PDK1, P = 0.001) were all independent prognostic factors for overall survival in NSCLC patients. Deregulation of miR-138/PDK1 cascade may be implicated in carcinogenesis and cancer progression of human NSCLC. More importantly, miR-138 and PDK1 may synergistically predict patients' prognosis and their combination may represent a promising prognostic biomarker of human NSCLC.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/sangue , Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Neoplasias Pulmonares/sangue , MicroRNAs/sangue , RNA Mensageiro/sangue , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA