Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acupunct Med ; 40(4): 360-368, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034504

RESUMO

BACKGROUND AND AIM: Disordered hepatic energy metabolism is found in obese rats with insulin resistance (IR). There are insufficient experimental studies of electroacupuncture (EA) for IR and type 2 diabetes mellitus (T2DM). The aim of this study was to probe the effect of EA on disordered hepatic energy metabolism and the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/ribosomal protein S6 kinase, 70-kDa (p70S6K) signaling pathway. METHODS: Zucker Diabetic Fatty (ZDF) rats were randomly divided into three groups: EA group receiving EA treatment; Pi group receiving pioglitazone gavage; and ZF group remaining untreated (n = 8 per group). Inbred non-insulin-resistant Zucker lean rats formed an (untreated) healthy control group (ZL, n = 8). Fasting plasma glucose (FPG), fasting insulin (FINS), C-peptide, C-reactive protein (CRP) and homeostatic model assessment of insulin resistance (HOMA-IR) indices were measured. Hematoxylin-eosin (H&E) staining was used to investigate the liver morphologically. The mitochondrial structure of hepatocytes was observed by transmission electron microscopy (TEM). Western blotting was adopted to determine protein expression of insulin receptor substrate 1 (IRS-1), mTOR, mTORC1, AMPK, tuberous sclerosis 2 (TSC2) and p70S6K, and their phosphorylation. RT-PCR was used to quantify IRS-1, mTOR, mTORC1, AMPK and p70S6K mRNA levels. RESULTS: Compared with the ZF group, FPG, FINS, C-peptide, CRP and HOMA-IR levels were significantly reduced in the EA group (p < 0.05, p < 0.01). Evaluation of histopathology showed improvement in liver appearances following EA. Phosphorylation levels of AMPK, mTOR and TSC2 decreased, and IRS-1 and p70S6K increased, in hepatocytes of the ZF group, while these negative effects appeared to be alleviated by EA. CONCLUSIONS: EA can effectively ameliorate IR and regulate energy metabolism in the ZDF rat model. AMPK/mTORC1/p70S6K and related molecules may represent a potential mechanism of action underlying these effects.


Assuntos
Diabetes Mellitus Tipo 2 , Eletroacupuntura , Resistência à Insulina , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peptídeo C/metabolismo , Peptídeo C/farmacologia , Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético , Insulina/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ratos , Ratos Zucker , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
2.
Nat Commun ; 13(1): 561, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091578

RESUMO

Plants use nitrate and ammonium as major nitrogen (N) sources, each affecting root development through different mechanisms. However, the exact signaling pathways involved in root development are poorly understood. Here, we show that, in Arabidopsis thaliana, either disruption of the cell wall-localized ferroxidase LPR2 or a decrease in iron supplementation efficiently alleviates the growth inhibition of primary roots in response to NH4+ as the N source. Further study revealed that, compared with nitrate, ammonium led to excess iron accumulation in the apoplast of phloem in an LPR2-dependent manner. Such an aberrant iron accumulation subsequently causes massive callose deposition in the phloem from a resulting burst of reactive oxygen species, which impairs the function of the phloem. Therefore, ammonium attenuates primary root development by insufficiently allocating sucrose to the growth zone. Our results link phloem iron to root morphology in response to environmental cues.


Assuntos
Compostos de Amônio/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Mutação , Nitratos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
3.
Food Chem ; 308: 125676, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-31655476

RESUMO

In this study, the improving effects of green tea powder, soluble tea, and tea polyphenols on the mixing and tensile qualities of dough and texture of tea-enriched noodles, as well as the physico-chemical and structural properties of gluten proteins were progressively investigated. Dough strength and noodle texture were significantly increased by all the three tea products. Tea polyphenols in particular presented the most effective improvement with highest dough stability, resistance, and noodle chewiness. SEM indicated that tea products all induced a more developed gluten network, and polyphenol noodle showed the most continuous and ordered structure. FT-IR and fluorescence spectrum indicated that tea polyphenols promoted an enhancement in α-helix structure and the hydrophobic interactions. Tea polyphenols induced the SH/SS interchange during processing and cooking, and enhanced the water-solids interaction in noodles. AFM results showed that polyphenols induced the polymerization of gluten protein molecular chains, with increased chain height and width.


Assuntos
Polifenóis/química , Chá/química , Triticum/química , Fenômenos Químicos , Culinária , Glutens/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Plant Cell Environ ; 43(1): 275-291, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31703150

RESUMO

Although the alteration of DNA methylation due to abiotic stresses, such as exposure to the toxic metal cadmium (Cd), has been often observed in plants, little is known about whether such epigenetic changes are linked to the ability of plants to adapt to stress. Herein, we report a close linkage between DNA methylation and the adaptational responses in Arabidopsis plants under Cd stress. Exposure to Cd significantly inhibited the expression of three DNA demethylase genes ROS1/DML2/DML3 (RDD) and elevated DNA methylation at the genome-wide level in Col-0 roots. Furthermore, the profile of DNA methylation in Cd-exposed Col-0 roots was similar to that in the roots of rdd triple mutants, which lack RDD, indicating that Cd-induced DNA methylation is associated with the inhibition of RDD. Interestingly, the elevation in DNA methylation in rdd conferred a higher tolerance against Cd stress and improved cellular Fe nutrition in the root tissues. In addition, lowering the Fe supply abolished improved Cd tolerance due to the lack of RDD in rdd. Together, these data suggest that the inhibition of RDD-mediated DNA demethylation in the roots by Cd would in turn enhance plant tolerance to Cd stress by improving Fe nutrition through a feedback mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/toxicidade , Desmetilação do DNA , Tolerância a Medicamentos/fisiologia , Ferro/metabolismo , Adaptação Fisiológica , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Cádmio/metabolismo , DNA Glicosilases/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis , Tolerância a Medicamentos/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mutação , Proteínas Nucleares/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico
5.
Sci Total Environ ; 627: 663-670, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426190

RESUMO

Several sulfur compounds are thought to play important roles in the plant tolerance to cadmium (Cd), but the role of inorganic sulfide in Cd tolerance remains largely unknown. In this study, we found that Cd exposure increased the accumulation of soluble sulfide in Arabidopsis plants. When exogenous sulfide, in the form of NaHS, was foliarly applied, Cd-induced growth inhibition and oxidative stress were alleviated. In addition, although the foliar application of sulfide did not affect the total Cd levels, it significantly decreased the soluble Cd fractions in plants. Furthermore, foliar applications of sulfide decreased Cd distribution in the cytoplasm and organelles, but increased Cd retention in the cell wall, which is a less sensitive compartment. These results suggest that the Cd-induced accumulation of soluble sulfide alleviates Cd toxicity in plants by inactivating Cd and sequestering it into the cell wall.


Assuntos
Arabidopsis/fisiologia , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Sulfetos/metabolismo , Arabidopsis/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Raízes de Plantas
6.
Oncol Rep ; 28(1): 384-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22552631

RESUMO

Many chemotherapeutic agents induce apoptosis via a p53-dependent pathway. However, up to 50% of human cancers have p53 mutation and loss of p53 function. Histone deacetylase inhibitors (HDACIs) are emerging as a potentially important new class of anticancer agents. Here, we report that, Trichostatin A (TSA), a pan-HDAC inhibitor, could induce G2/M cell cycle arrest and apoptosis in both colorectal cancer cell lines with wild-type p53 (HT116 cells) and mutant p53 (HT29 cells), although HCT116 cells had more apoptotic cells than HT29 cells. TSA induces apoptosis in both cell lines via the mitochondrial pathway as indicated by decrease of the mitochondrial membrane potential (MMP) and activation of caspase-3. Additionally, TSA induces expression of the pro-apoptotic protein Bax and decreases the expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL in both cell lines. Bax knockdown by siRNA significantly impaired TSA-induced apoptosis in both cell lines. These data suggest that TSA induces G2/M cell cycle arrest and Bax-dependent apoptosis in colorectal cancer cells (HCT116 cells and HT29 cells) by both p53-dependent and -independent mechanisms. However, cells with normal p53 function are more sensitive to TSA-induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Neoplasias Colorretais , Ativação Enzimática , Células HCT116 , Células HT29 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mutação , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/metabolismo
7.
Int J Cancer ; 124(11): 2549-58, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19165868

RESUMO

Ezrin, which crosslinks the cytoskeleton and plasma membrane, is involved in the growth and metastatic potential of cancer cells. Ezrin expression in esophageal squamous cell carcinoma (ESCC) was described recently, but its roles and the underlying mechanism(s) remain unclear. In our study, we first showed that ezrin in ESCC cell is expressed in the nucleus as well as in the cytoplasm and plasma membrane. Then, by using RNAi, we revealed that interference of ezrin expression suppressed the growth, adhesion and invasiveness of ESCC cells. Tumorigenesis experiments revealed that ezrin may directly regulate tumor formation in vivo. To explore the molecular mechanisms through which ezrin contributes to the proliferation and invasiveness of ESCC cells, we used cDNA microarrays to analyze ezrin knockdown cells and the control cells; of 39,000 genes examined, 297 were differentially expressed upon ezrin knockdown, including some proliferation- and invasiveness-related genes such as ATF3, CTGF and CYR61. Furthermore, pathway analysis showed that ezrin knockdown led to decreased activation of the TGF-beta and MAPK pathways, and ezrin-mediated cell invasiveness alteration was dependent on the activation of these pathways. Finally, immunohistochemical staining on 80 ESCC specimens and 50 normal esophageal mucosae revealed that the expression levels of 3 altered genes involved in the regulation of cell proliferation and tumor metastasis, including CTGF, CYR61 and ATF3, were altered in ESCCs, and their expression pattern correlated with ezrin expression. Taken together, we propose that ezrin might function in the growth and invasiveness of ESCC cells through the MAPK and TGF-beta pathways.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Fator 3 Ativador da Transcrição/genética , Animais , Carcinoma de Células Escamosas/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61/genética , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/patologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Camundongos , Invasividade Neoplásica , RNA Interferente Pequeno/genética , Fator de Crescimento Transformador beta1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA