Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(27): 9943-9954, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366549

RESUMO

We assessed the efficacy of ozonation as an indoor remediation strategy by evaluating how a carpet serves as a sink and long-term source of thirdhand tobacco smoke (THS) while protecting contaminants absorbed in deep reservoirs by scavenging ozone. Specimens from unused carpet that was exposed to smoke in the lab ("fresh THS") and contaminated carpets retrieved from smokers' homes ("aged THS") were treated with 1000 ppb ozone in bench-scale tests. Nicotine was partially removed from fresh THS specimens by volatilization and oxidation, but it was not significantly eliminated from aged THS samples. By contrast, most of the 24 polycyclic aromatic hydrocarbons detected in both samples were partially removed by ozone. One of the home-aged carpets was installed in an 18 m3 room-sized chamber, where its nicotine emission rate was 950 ng day-1 m-2. In a typical home, such daily emissions could amount to a non-negligible fraction of the nicotine released by smoking one cigarette. The operation of a commercial ozone generator for a total duration of 156 min, reaching concentrations up to 10,000 ppb, did not significantly reduce the carpet nicotine loading (26-122 mg m-2). Ozone reacted primarily with carpet fibers, rather than with THS, leading to short-term emissions of aldehydes and aerosol particles. Hence, by being absorbed deeply into carpet fibers, THS constituents can be partially shielded from ozonation.


Assuntos
Ozônio , Poluição por Fumaça de Tabaco , Nicotina/análise , Poluição por Fumaça de Tabaco/análise , Pisos e Cobertura de Pisos
2.
Chem Res Toxicol ; 33(8): 2157-2163, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32618192

RESUMO

Recent reports have linked severe lung injuries and deaths to the use of e-cigarettes and vaping products. Nevertheless, the causal relationship between exposure to vaping emissions and the observed health outcomes remains to be elucidated. Through chemical and toxicological characterization of vaping emission products, this study demonstrates that during vaping processes, changes in chemical composition of several commonly used vape juice diluents (also known as cutting agents) lead to the formation of toxic byproducts, including quinones, carbonyls, esters, and alkyl alcohols. The resulting vaping emission condensates cause inhibited cell proliferation and enhanced cytotoxicity in human airway epithelial cells. Notably, substantial formation of the duroquinone and durohydroquinone redox couple was observed in the vaping emissions from vitamin E acetate, which may be linked to acute oxidative stress and lung injuries reported by previous studies. These findings provide an improved molecular understanding and highlight the significant role of toxic byproducts in vaping-associated health effects.


Assuntos
Benzoquinonas/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Hidroquinonas/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Vaping/efeitos adversos , Vitamina E/efeitos adversos , Benzoquinonas/química , Benzoquinonas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidroquinonas/química , Hidroquinonas/metabolismo , Vitamina E/química , Vitamina E/metabolismo
3.
Environ Sci Technol ; 49(22): 13130-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26460682

RESUMO

Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.


Assuntos
Hidrocarbonetos/química , Petróleo/análise , Cromatografia Gasosa , Golfo do México , Isomerismo , Espectrometria de Massas , Peso Molecular , Campos de Petróleo e Gás/química , Poluição por Petróleo/análise , Padrões de Referência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA